
Data Base Connectivity &

Web Applications

Database Connectivity

• Mechanisms through which applications

connect and communicate with data repositories

– Database middleware: provides an interface

between the application program and the database

– Data repository: data management application used

to store data generated by an application program

– Universal Data Access (UDA): collection of

technologies used to access any type of data source

and manage the data through a common interface

• ODBC, OLE-DB, and ADO.NET form the backbone of

MicroSoft’s UDA architecture

Middleware

Native SQL Connectivity

• Connection interface provided by database

and/or language vendors, which is unique to

each vendor

– Interfaces are optimized for particular vendor’s

language and/or DBMS

• Oracle provides SQL*Net so client or server

applications can directly access an Oracle

database

Native SQL Connectivity (con’t)

• PHP provides a native interface to MySQL

database so one can make direct SQL calls

from within a PHP web aplication

ODBC, DAO, and RDO
• Open Database Connectivity (ODBC): Microsoft’s implementation of a

superset of SQL Access Group Call Level Interface (CLI) standard for

database access

– Widely supported database connectivity interface

– Allows Windows application to access relational data sources by using SQL via

standard application programming interface (API)

• Data Access Objects (DAO): object-oriented API used to access desktop

databases such as MS Access and FileMaker Pro

– Provides an optimized interface that expose functionality of Jet data engine to

programmers

• Remote Data Objects (RDO): higher-level object-oriented application

interface used to access remote database servers

• Optimized to deal with server-based databases

• Dynamic-link libraries (DLLs): implements ODBC, DAO, and RDO as

shared code that is dynamically linked to the Windows operating

environment

ODBC, DAO, and RDO (con’t)

• Components of ODBC architecture

– High-level ODBC API through which

application programs access ODBC

functionality

– Driver manager that is in charge of managing

all database connections

– ODBC driver that communicates directly to

DBMS

ODBC, DAO, and RDO (con’t)

Or your program

OLE-DB
• Object Linking and Embedding for Database (OLE-DB)

– Database middleware that adds object-oriented functionality for access to

relational and nonrelational data

– Series of COM objects provides low-level database connectivity for

applications

– Types of objects based on functionality

• Consumers: applications or processes

• Providers: data or service

– Does not provide support for scripting languages

• ActiveX Data Objects (ADO) provide:

– High-level application-oriented interface to interact with OLE-DB, DAO,

and RDO

– Unified interface to access data from any programming language that

uses the underlying OLE-DB objects

OLE-DB (con’t)

Or your program

ADO.NET
• Data access component of Microsoft’s .NET application

development framework

• Microsoft’s .NET framework

– Component-based platform for developing distributed, heterogeneous,

interoperable applications

– Manipulates any type of data using any combination of network,

operating system, and programming language

– Extends and enhances functionality critical for the development of

distributed applications

• DataSet: disconnected memory-resident representation of the

database

– Contains tables, columns, rows, relationships and constraints

– Internally stored in XML format

– Data in DataSet is made persistent as XML documents

ADO.NET (con’t)

Or your

program

Java Database Connectivity (JDBC)

• Application programming interface that allows a Java

program to interact with a wide range of data sources

• Advantages of JDBC

– Company can leverage existing technology and personnel

training

– Direct access to database server or access via database

middleware

– Programmers can use their SQL skills to manipulate the data

in the company's databases

– Provides a way to connect to databases through an ODBC

driver

Java Database Connectivity (con’t)

Web-to-Database Middleware:

Server-Side Extensions

• Web server is the main hub through which

Internet services are accessed

– Server-side extension: program that interacts

directly with the web server

• Provides services to the web server in a way that

is totally transparent to the client browser

• Known as web-to-database middleware

Web-to-Database Middleware:

Server-Side Extensions (con’t)

Web Server Interfaces

• Currently, there are two well-defined web

server interfaces

– Common Gateway Interface (CGI): uses script

files that perform specific functions based on

the client’s parameters that are passed to the

web server

– Application programming interface (API):

implemented as shared code or as dynamic-link

libraries; treated as part of the web server

program that is dynamically invoked when

needed

Web Application Servers

• Middleware application that expands the functionality

of web servers by linking them to a wide range of

services (also called web servers or information

servers)

– Connects to and query database from web page

– Presents database data in a webpage using various formats

– Creates dynamic web search pages

– Creates webpages to insert, update, and delete data

– Enforces referential integrity

– Uses simple and nested queries and program logic to

represent business rules

Web Application Servers (con’t)

• Web application server features

– Integrated development environment

– Security and user authentication

– Computational languages

– Automation generation of HTML pages

– Performance and fault -tolerant features

– Database access with transaction management

capabilities

– Access to multiple services

Web Database Options

• Static Publishing - IDC

• Server Side Interfaces
– CGI

• Perl & C/C++

– Information Server API (ISAPI & NSAPI)
• Active Server Pages (.Net technologies)

• Java Servlets

• Java Server Pages (uses Java Servlets)

• Cold Fusion (uses Java Servlets)

• PHP

• Direct Socket Communication
– C/C++

– Java Applets and Java Servelets

Static vs Active DB Publishing

• Static Publishing - a browser user request a pre-

generated HTML page. That page may have been

previously generated from a database (ie Access)

using IDC or similar

• Active Publishing - a browser user interactively

submits information (typically via a “form”) that

determines an SQL type query, and the query

results are returned to the user typically in an

HTML page (or open Java Applet window)

Access Query

Access Query Results

Saving Static Pages

Static HTML Generated
• <HTML><HEAD><META HTTP-EQUIV="Content-Type" CONTENT="text/html;charset=windows-1252">

• <TITLE>Q7 - Simple Join (Class Exercise)</TITLE></HEAD><BODY>

• <TABLE BORDER=1 BGCOLOR=#ffffff CELLSPACING=0><CAPTION>Q7</CAPTION><THEAD><TR>

• <TH BGCOLOR=#c0c0c0 BORDERCOLOR=#000000 >SID</TH>

• <TH BGCOLOR=#c0c0c0 BORDERCOLOR=#000000 >PName</TH>

• <TH BGCOLOR=#c0c0c0 BORDERCOLOR=#000000 >Qty</TH></THEAD>

• <TBODY><TR VALIGN=TOP>

• <TD BORDERCOLOR=#c0c0c0 >S2</TD>

• <TD BORDERCOLOR=#c0c0c0 >Shirt</TD>

• <TD BORDERCOLOR=#c0c0c0 ALIGN=RIGHT>200</TD></TR>

• <TR VALIGN=TOP>

• <TD BORDERCOLOR=#c0c0c0 >S5</TD>

• <TD BORDERCOLOR=#c0c0c0 >Shirt</TD>

• <TD BORDERCOLOR=#c0c0c0 ALIGN=RIGHT>50</TD></TR>

• <TR VALIGN=TOP>

• <TD BORDERCOLOR=#c0c0c0 >S2</TD>

• <TD BORDERCOLOR=#c0c0c0 >Trousers</TD>

• <TD BORDERCOLOR=#c0c0c0 ALIGN=RIGHT>100</TD></TR>

• <TR VALIGN=TOP>

• <TD BORDERCOLOR=#c0c0c0 >S5</TD>

• <TD BORDERCOLOR=#c0c0c0 >Trousers</TD>

• <TD BORDERCOLOR=#c0c0c0 ALIGN=RIGHT>500</TD></TR>

• <TR VALIGN=TOP>

• <TD BORDERCOLOR=#c0c0c0 >S5</TD>

• <TD BORDERCOLOR=#c0c0c0 >Socks</TD>

• <TD BORDERCOLOR=#c0c0c0 ALIGN=RIGHT>800</TD></TR>

• <TR VALIGN=TOP>

• <TD BORDERCOLOR=#c0c0c0 >S4</TD>

• <TD BORDERCOLOR=#c0c0c0 >Blouse</TD>

• <TD BORDERCOLOR=#c0c0c0 ALIGN=RIGHT>200</TD></TR>

• <TR VALIGN=TOP>

• <TD BORDERCOLOR=#c0c0c0 >S5</TD>

• <TD BORDERCOLOR=#c0c0c0 >Blouse</TD>

• <TD BORDERCOLOR=#c0c0c0 ALIGN=RIGHT>500</TD></TR>

• <TR VALIGN=TOP>

• <TD BORDERCOLOR=#c0c0c0 >S4</TD>

• <TD BORDERCOLOR=#c0c0c0 >Blouse</TD>

• <TD BORDERCOLOR=#c0c0c0 ALIGN=RIGHT>100</TD></TR>

• <TR VALIGN=TOP>

• <TD BORDERCOLOR=#c0c0c0 >S5</TD>

• <TD BORDERCOLOR=#c0c0c0 >Blouse</TD>

• <TD BORDERCOLOR=#c0c0c0 ALIGN=RIGHT>100</TD></TR>

• </TBODY><TFOOT></TFOOT></TABLE></BODY></HTML>

Servers Involved

• Information (or Web) Server - server running Microsoft

Information Server (IIS) or Apache (open source)

• Uses HTTP (HyperText Transfer Protocol) to

communicate with clients; HTTP is a TCP/IP

application service (like FTP, SMTP, etc.).

• Database Server - server running Oracle, Sybase,

SQLServer, MySQL, or simply containing Access

(.mdb or .accdb) files

• Both “servers” may be on one machine

Typical Microsoft Web Server

• Operating System – Windows Server

• Web Server - IIS

• Server Processing
• ISAPI (direct calls with C++)

• CGI

• Active Server Pages

• Java Server Pages

• Java Servlets

• Cold Fusion

• Database Access (ODBC, ADO, OLE/DB, JDBC)
• SQLServer

• Access

• MySQL

Typical Unix Web Server

• Operating System – Unix/Linux

• Web Server - Apache, Netscape, CERN

• Server Processing

• CGI (Perl, C/C++, Java)

• NSAPI (direct calls with C++ or Java)

• Java Server Pages

• Java Servlets

• Cold Fusion

• Database (ODBC, JDBC, native)

• Oracle

• Informix

• MySQL

Open Database Connectivity

[ODBC]

• Developed in 1990’s by X/Open and SQL

Access Group committees to provide an

open DBMS independent API for relational

databases (can also be used for non-

relational databases)

• First fully implemented by Microsoft; now

implemented by most all DBMS vendors

and third party suppliers

ODBC Data Sources

• An ODBC Data Source is the combination

of the database, it’s associated DBMS,

operating system, and network middleware

(if any).

• A data source can be an Oracle database,

Sybase database, SQLServer database,

Access database, MySQL database, Excel

spreadsheet, Btrieve file server, etc.

ODBC Components

• Application - makes calls using ODBC API

functions to create a connection to a data source,

issues dynamic SQL statements, get back result

sets, start-commit-rollback transactions, and

receive status/error conditions

• Driver Manager - loads appropriate driver and

handles communication between the application

and the specific data source driver

• DBMS Driver - turns driver manager commands

into specific SQL for target database

Driver Types

• Single Tier - Database does not handle SQL

directly, so the driver on the host translates

the SQL into native calls

• Multiple Tier - Driver does not process SQL

(although it may format and modify it), but

passes SQL directly onto database -

multiple servers may be involved

Data Source Types

• File Data Source - A file that is shared among
users; users all have same driver and privileges

• System Data Source - A source that is local to a
single computer

• User Data Source - only available to user who
created it

• Generally you set up a System Data Source on the
server on which your CGI/ISAPI programs
execute or on the client to a specific database (may
be local database, on a “mapped” network drive,
or server database)

ODBC Data Source

Internet Database Connector

(IDC)
• This is a Microsoft product that can be used to

make static snapshot’s of database information for
publishing on the web

• A server program (Httpodbc.dll) is run which uses
an ODBC data source to read a database file (ie
Access) and create HTML pages

• IDC needs two files to be created: *.idc to indicate
the data source and table, and *.htx to specify the
HTML formatting

• Access can generate these files

SalesPerson.idc

• Datasource:SP_Access

• Template:SalesPerson.htx

• SQLStatement:SELECT * FROM [S]

• Password:

• Username:

SalesPerson.htx

• Standard HTML except uses placeholders

for actual data values:

– <%SID%> for example each salesperson id

• The is a header part which is the column

titles: <THEAD> tag

• And a detail part which is the information

for each row: <TBODY>

• Both are generally formatted as tables

Using Access to Make IDC Files

Generated .idc file

• Datasource:SP_Access

• Template:Q7 - Simple Join.htx

• SQLStatement:SELECT DISTINCTROW SP.SID,

P.PName, SP.Qty

• +FROM P INNER JOIN SP ON P.PID =

SP.PID;

• Password:

• Username:

Generated .htx File

• <HTML>

• <HEAD>

• <META HTTP-EQUIV="Content-Type" CONTENT="text/html;charset=windows-1252">

• <TITLE>Q7 - Simple Join (Class Exercise)</TITLE>

• </HEAD>

• <BODY>

• <TABLE BORDER=1 BGCOLOR=#ffffff CELLSPACING=0>

• <CAPTION>Q7 - Simple Join</CAPTION>

• <THEAD>

• <TR>

• <TH BGCOLOR=#c0c0c0 BORDERCOLOR=#000000 >SID</TH>

• <TH BGCOLOR=#c0c0c0 BORDERCOLOR=#000000 >PName</TH>

• <TH BGCOLOR=#c0c0c0 BORDERCOLOR=#000000 >Qty</TH>

• </TR>

• </THEAD>

• <TBODY>

• <%BeginDetail%>

• <TR VALIGN=TOP>

• <TD BORDERCOLOR=#c0c0c0 ><%SID%>
</TD>

• <TD BORDERCOLOR=#c0c0c0 ><%PName%>
</TD>

• <TD BORDERCOLOR=#c0c0c0 ALIGN=RIGHT><%Qty%>
</TD>

• </TR>

• <%EndDetail%>

• </TBODY>

• <TFOOT></TFOOT>

• </TABLE>

• </BODY>

• </HTML>

Note how much smaller this HTML is than prior example

Web Server Interface

• API (Application Program Interface) – Software

becomes “part of information server” process

– ISAPI

• Microsoft specific

• Uses *.dll’s

• Master process started once

– NSAPI

• Platform independent

• Master process started once

• CGI

– General solution

– Separate host process (with separate memory areas) for

each program executing

DB Query/Update via HTTP/CGI

HTML Forms

HTML Code for Form

• <FORM METHOD=POST ACTION="attend.cgi">

• <H2>Please enter attendance information:</H2>

• <P>First Name:<INPUT NAME="first" TYPE=text

SIZE="20">

• <P>Last Name :<INPUT NAME="last" TYPE=text

SIZE="20">

• <P>Course :<INPUT NAME="course" TYPE=text

SIZE="7" VALUE="ITM451">

• <P><INPUT TYPE=submit VALUE="Submit"><INPUT

TYPE=reset VALUE="Reset">

• </FORM>

“attend.cgi” is CGI program

CGI Processing

• A program on the internet server that receives
HTTP data (URLencoded) from a client (typically
via the submit button on an HTML form)

• The program can be

– C/C++ (fastest execution)

– Visual Basic (if MS operating system)

– Perl (Practical Extraction and Report Language) - an
interpreted language

• The stream of data from the client is sent in either
“GET” format (command line arguments) or in
“POST” (stdin) format

PERL

• Practical Extraction and Report Language

• Interpreted language

• Good character/string handling

• Good interface to Unix system functions

• User to create server side programs that respond to
HTTP get/post commands, and then interact with a
DBMS (or file system) and return HTML pages to
browser

• Free and platform independent

• C like syntax, but less powerful

Form Validation
• HTML Forms

– Server side

• CGI script validation - host validation including error codes
from DBMS

• API validation - host validation including error codes from
DBMS

– Client Side (Java Script or VBScript) - client side
validation and navigation control and browser
dependent (also source is typically visible); since
JavaScript is neutral, it is normally used

• Java Forms (Applets)

– Client side validation, navigation control, browser
independent, and inheritance

Example Java Script Form Validation

• <HTML><HEAD><TITLE>Some Title</TITLE>

• <SCRIPT LANGUAGE = “JavaScript”>

– var helpArray = [“Enter your name here”,…];

– function helpText(msgNum) {

• myForm.helpBox.value = helpArray[msgNum]; }

– function validateField (fieldNum) {…}

• </SCRIPT></HEAD><BODY>

• <FORM ID = “myForm”>

• Name: <INPUT TYPE = “text” NAME = “name”

• ONFOCUS = “helpText(0)” ONBLUR = “validateField(0)”>

• …

• <TEXTAREA NAME = “helpBox” STYLE = “position: absolute;

• right: 0; top: 0” ROWS = 4 COLS = 45>…</TEXTAREA>

• </FORM></BODY></HTML>

Active Server Pages (or ActiveX

Server Pages)

• ASP is a Microsoft developed technology for

sending dynamic Web content - which includes

HTML, Dynamic HTML, ActiveX controls, client

side scripts, and Java Applets to an internet client

• ASP is like running an Access form (or datasheet)

locally except, it occurs over the internet; it is

relatively slow and provides minimal validation;

also if Access is used as the database (instead of

SQL Server, there is no transaction or concurrency

control)

• A client sends an HTTP request to an

information server (an NT or Windows

2000 server, or a Unix server with special

third party software) running an ASP

process (a server side ActiveX controll

“asp.dll”)

• The server receives the request and directs

it the the designated ASP

• The ASP program executes (which often

involves interacting with a database) and

returns its result to the client (typically in

the form of an HTML document)

Active Server Pages

• A number of scripting languages can be

used in the ASP

• Typically Visual Basic Script (VBScript) is

used and is the default (another scripting

language can be specified with the

@LANGUAGE tag)

Client Side vs Server Side Scripting

• Server side scripting allows greater flexibility

• Source code is not visible on server side

• Server scripting is implemented on a particular server,

and cross platform compatibility is not an issue

(VBScript is typically used for Windows servers)

• A typical example is for a client to request to see flights

from one place to another; the server script would

formulate and send an SQL request to the database (on

the same or another server); when it got the results it

would format them in and HTML table and send it back

to the client

Creating ASP’s

• Microsoft Access

• Microsoft Visual Studio (.Net)

• Case Packages (ie DBApp)

• Manually

Simple ASP for a Clock

• <% @LANGUAGE=VBScript %><% Option Explicit %>

• <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0

Transitional//EN">

• <HTML><HEAD><TITLE>A Simple ASP Example</TITLE>

• <META HTTP-EQUIV="REFRESH" CONTENT="60; URL=CLOCK.ASP">

• </HEAD><BODY>

• Simple ASP

Example

• <P>

• <TABLE BORDER="6">

• <TR><TD BGCOLOR="#000000">

•

• <% =Time() %> <% … %> indicates script

•

• </TD></TR>

• </TABLE>

• </BODY></HTML>

Form Processing with ASP

Form Generation & Processing with ASP
[register.asp]

• <% @LANGUAGE = VBScript %>

• <% Option Explicit %>

• <HTML>

• <HEAD>

• <TITLE>ASP Register</TITLE>

• <BODY>

• <H1>

• <%

• If Request("entry") = "true" Then

• Call Response.Write("Thanks for siging in, ")

• Call Response.Write(Request("name") & "!")

• Else

• %>

• </H1>

• <H2>Please sign in

• <FORM ACTION = "register.asp?entry=true" METHOD = "POST">

• Name: <INPUT TYPE = "text" FACE = "Arial" SIZE = "40" NAME = "name">

• City: <INPUT TYPE = "text" FACE = "Arial" SIZE = "20" NAME = "city">

• State: <INPUT TYPE = "text" FACE = "Arial" SIZE = "3" NAME = "state">

• <INPUT TYPE = "submit" VALUE = "SUBMIT">

• <INPUT TYPE = "reset" VALUE = "CLEAR">

• <%

• End If

• %>

• </BODY></HTML>

Access Database Example

ODBC System DSN

Using Access to Generate ASP

Generated ASP

• <HTML><HEAD>

• <META HTTP-EQUIV="Content-Type" CONTENT="text/html;charset=windows-1252">

• <TITLE>Q7 - Simple Join (Class Exercise)</TITLE></HEAD><BODY>

• <%

• Param = Request.QueryString("Param")

• Data = Request.QueryString("Data")

• %>

• <%

• If IsObject(Session("SP_Access_conn")) Then

• Set conn = Session("SP_Access_conn")

• Else

• Set conn = Server.CreateObject("ADODB.Connection")

• conn.open "SP_Access","",""

• Set Session("SP_Access_conn") = conn

• End If

• %>

• <%

• sql = "SELECT DISTINCTROW SP.SID, P.PName, SP.Qty FROM P INNER JOIN SP ON P.PID = SP.PID

"

• If cstr(Param) <> "" And cstr(Data) <> "" Then

• sql = sql & " WHERE [" & cstr(Param) & "] = " & cstr(Data)

• End If

• Set rs = Server.CreateObject("ADODB.Recordset")

• rs.Open sql, conn, 3, 3

• %>

• <TABLE BORDER=1 BGCOLOR=#ffffff CELLSPACING=0><CAPTION>Q7 -

Simple Join (Class Exercise)</CAPTION>

• <THEAD><TR>

• <TH BGCOLOR=#c0c0c0 BORDERCOLOR=#000000 ><FONT SIZE=2 FACE="Arial"

COLOR=#000000>SID</TH>

• <TH BGCOLOR=#c0c0c0 BORDERCOLOR=#000000 ><FONT SIZE=2 FACE="Arial"

COLOR=#000000>PName</TH>

• <TH BGCOLOR=#c0c0c0 BORDERCOLOR=#000000 ><FONT SIZE=2 FACE="Arial"

COLOR=#000000>Qty</TH></TR>

• </THEAD><TBODY>

• <%On Error Resume Next

• rs.MoveFirst

• do while Not rs.eof %>

• <TR VALIGN=TOP>

• <TD BORDERCOLOR=#c0c0c0 ><FONT SIZE=2 FACE="Arial"

COLOR=#000000><%=Server.HTMLEncode(rs.Fields("SID").Value)%>
</TD>

• <TD BORDERCOLOR=#c0c0c0 ><FONT SIZE=2 FACE="Arial"

COLOR=#000000><%=Server.HTMLEncode(rs.Fields("PName").Value)%>
</TD>

• <TD BORDERCOLOR=#c0c0c0 ALIGN=RIGHT><FONT SIZE=2 FACE="Arial"

COLOR=#000000><%=Server.HTMLEncode(rs.Fields("Qty").Value)%>
</TD>

• </TR>

• <%rs.MoveNextloop%>

• </TBODY><TFOOT></TFOOT></TABLE></BODY></HTML>

Manually Written ASP
• <% @LANGUAGE = VBScript %>

• <% Option Explicit %>

• <HTML>

• <HEAD><TITLE>ODBC Example</TITLE></HEAD>

• <% Dim connection, query, data

• Set connection = Server.CreateObject("ADODB.Connection")

• Call connection.Open("SP")

• ' Create the SQL query

• query = "SELECT * FROM S"

• ' Create the recordset

• Set data = Server.CreateObject("ADODB.Recordset")

• Call data.Open(query, connection)

• ' If an error occurs, ignore it

• On Error Resume Next

• %>

• <BODY>

• <H1>List of Salespersons</H1>

• <%While Not data.EOF%>

• <H2><% =data("SName") %></H2>

• <%Call data.MoveNext()

• Wend%>

• </BODY></HTML>

Running ASP

Case Study

Internet Database Interaction Using

Modern Web Server Technology

Web Server Application Languages

Case Study Form

HTML for Form
• <HTML>

<HEAD>
<TITLE>Add a New Person</TITLE>

</HEAD>
<BODY>

<FORM ACTION="changeme.cgi">
<TABLE>

<TR>
<TD>First Name:</TD>
<TD><INPUT TYPE="text" NAME="firstname"></TD>

</TR>
<TR>

<TD>Last Name:</TD>
<TD><INPUT TYPE="text" NAME="lastname"></TD>

</TR>
<TR>

<TD>Zip Code:</TD>
<TD><INPUT TYPE="text" NAME="zipcode"></TD>

</TR>
<TR>

<TD COLSPAN="2" ALIGN="RIGHT">
<INPUT TYPE="submit" VALUE="Add Person">
</TD>

</TR>
</TABLE>

</FORM>
</BODY>
</HTML>

HTML Response page

SQL

• Add row to PEOPLE table:

– INSERT INTO PEOPLE VALUES

(firstname,, lastname, zipcode)

• Retrieve all data for all rows in

PEOPLE table:

– SELECT * FROM PEOPLE

SavePerson.cgi (Perl)
• #!/usr/bin/perl -w

• use strict; # restrict unsafe constructs

• use DBI; # import the DBI module

• use CGI qw(:standard *table); # import the CGI functions

• # Move form data into local variables.

• #

• my $firstname = param("firstname");

• my $lastname = param("lastname");

• my $zipcode = param("zipcode");

• # Print the standard text/html header before you do

• # anything that might raise an error.

• #

• print header();

• # Connect to the local MySQL server.

• #

• my $user = "bjepson";

• my $passwd = "password";

• my $dsn = "DBI:mysql:database=bjepson";

• my $dbh = DBI->connect($dsn, $user, $passwd);

• if (!$dbh) { die "Error connecting: $DBI::errstr.\n" };

• # Insert the new person.

• #

• my $sql = "INSERT INTO PEOPLE VALUES

• ('$firstname', '$lastname', '$zipcode')";

• if (!$dbh->do($sql)) {

• print "Warning: SQL statement:

• <PRE>$sql</PRE>

• failed!!!
";

• exit;

• }

• # Display the HTML document.

• #

• print start_html("New Person: $firstname $lastname");

• print "I added $firstname $lastname to the database.

• Here is the complete list of people:";

• # Retrieve the people with a SELECT statement.

• #

• my $stmt = $dbh->prepare("SELECT * FROM PEOPLE");

• if (!$stmt->execute()) {

• print "
Warning: SELECT statement failed!!!
";

• exit;

• }

• # Fetch all the rows and display them in a table.

• #

• print start_table({-border => 1});

• while (my @row = $stmt->fetchrow_array) {

• my ($first, $last, $zip) = @row;

• print "<TR>

• <TD>$first $last</TD><TD>$zip</TD>

• </TR>";

• }

• $stmt->finish;

• print end_table;

• print end_html;

• $dbh->disconnect;

SavePerson.asp (Active Server Pages)
• <%@ page language="C#" contentType="text/html" %>

• <%@ import namespace= "System.Data" %>

• <%@ import namespace= "System.Data.OleDb" %>

• <%

• /*

• * Move the form data into local variables.

• */

• string firstname = Request["firstname"];

• string lastname = Request["lastname"];

• string zipcode = Request["zipcode"];

• /*

• * Connect to the database server.

• */

• string conn_str =

• "provider=SQLOLEDB;server=(local)\\NetSDK;uid=sa;";

• OleDbConnection conn = new OleDbConnection(conn_str);

• conn.Open();

• /*

• * Create an SQL statement to insert the new person.

• */

• string sql_template =

• "INSERT INTO PEOPLE VALUES ('{0}', '{1}', '{2}')";

• string sql = String.Format(sql_template,

• firstname,

• lastname,

• zipcode);

• /*

• * Send the SQL to the database.

• */

• OleDbCommand cmd = new OleDbCommand(sql, conn);

• cmd.ExecuteNonQuery();

• %>

• <HTML>

• <HEAD>

• <TITLE>

• New Person: <%= firstname + " " + lastname %>

• </TITLE>

• </HEAD>

• <BODY>

• I added <%= firstname + " " + lastname %> to the

• database. Here is the complete list of people:

• <%

• /* Fetch all the customers and bind to the

• * HTML table.

• */

• sql = "SELECT firstname + ' ' + lastname " +

• "AS fullname, zipcode FROM PEOPLE";

• OleDbDataAdapter da =

• new OleDbDataAdapter(sql, conn);

• DataSet ds = new DataSet();

• da.Fill(ds, "PEOPLE");

• Table1.DataSource =

• ds.Tables["PEOPLE"].DefaultView;

• Table1.DataBind();

• %>

• <!-- Insert an ASP.NET DataGrid component. -->

• <asp:DataGrid id="Table1"

• AutoGenerateColumns="false"

• runat="server">

• <Columns>

• <asp:BoundColumn

• HeaderText="Name"

• DataField="fullname"/>

• <asp:BoundColumn

• HeaderText="Zip Code"

• DataField="zipcode"/>

• </Columns>

•

• </asp:DataGrid>

• </BODY>

• </HTML>

SavePerson.JSP (Java Server Pages)

• <%@ page language="java"
contentType="text/html" %>
<%@ page import = "java.sql.*" %>
<%
/*
* Move the form data into local
variables.
*/
String firstname =
request.getParameter("firstname");
String lastname =
request.getParameter("lastname");
String zipcode =
request.getParameter("zipcode");
/*
* Load the JDBC driver for
PostgreSQL.
*/
Class.forName("org.postgresql.Driver");
/*
* Connect to the database server.
*/
String connection_string =
"jdbc:postgresql:testdb";
String username = "bjepson";
String password = "password";
Connection conn = DriverManager.
getConnection(connection_string,
username, password);
Statement stmt = conn.
createStatement();
/*
* Create an SQL statement to insert
the new person.
*/
String sql = "INSERT INTO PEOPLE " +
"VALUES('" + firstname + "', " +
"'" + lastname + "', " +
"'" + zipcode + "') ";
/*
* Send the SQL to the database.
*/
stmt.executeUpdate(sql);
%>

• <HTML>
<HEAD>
<TITLE>
New Person: <%= firstname + " " +
lastname %>
</TITLE>
</HEAD>
<BODY>
I added <%= firstname + " " +
lastname %> to the database. Here is
the complete list of people:
<TABLE BORDER>
<TH>Name</TH><TH>Zip Code</TH>
<%
/*
* Fetch each row in the table,
and display it as an HTML table row.
*/
ResultSet rs =
stmt.executeQuery("SELECT *
FROM PEOPLE");
while(rs.next()) {
firstname = rs.getString(1);
lastname = rs.getString(2);
zipcode = rs.getString(3);
%>
<TR>
<TD><%= firstname + " " +
lastname %></TD>
<TD><%= zipcode %></TD>
</TR>
<% } /* end of the while loop */ %>
</TABLE>
</BODY>
</HTML>

SavePerson.cfm (Cold Fusion)
• <!-- Import the form data. -->

• <cfset firstname=form.firstname>

• <cfset lastname=form.lastname>

• <cfset zipcode=form.zipcode>

• <!-- Insert the new person. -->

• <cfquery name="MyUpdate" dataSource="Local">

• INSERT INTO PEOPLE VALUES (

• <cfqueryparam value="#firstname#" CFSQLType="CF_SQL_CHAR">,

• <cfqueryparam value="#lastname#" CFSQLType="CF_SQL_CHAR">,

• <cfqueryparam value="#zipcode#" CFSQLType="CF_SQL_CHAR">)

• </cfquery>

• <HTML>

• <HEAD>

• <TITLE>

• New Person: <cfoutput>#firstname# #lastname#</cfoutput>

• </TITLE>

• </HEAD>

• <BODY>

• I added <cfoutput>#firstname# #lastname#</cfoutput>

• to the database.

• Here is the complete list of people:

• <!-- Retrieve all the people. -->

• <cfquery name="MyQuery" dataSource="Local">

• SELECT * FROM PEOPLE

• </cfquery>

• <!-- Create a ColdFusion HTML table and associate it with MyQuery -->

• <cftable border HTMLTable query="MyQuery">

• <cfcol header="Name" text="#firstname# #lastname#">

• <cfcol header="Zip" text="#zipcode#">

• </cftable>

• </BODY>

• </HTML>

SavePerson.PHP

• <?php
/*
* Connect to a MySQL database server.
*/
$db = mysql_connect(“myhost", "bjepson', "password");
mysql_select_db("bjepson", $db);
/*
* Create an SQL statement to insert the new person.
*/
$sql = "INSERT INTO PEOPLE VALUES
("$firstname", "$lastname", "$zipcode")";
/*
* Send the SQL to the database.
*/
mysql_query($sql, $db);
?>

PHP covered in

MIS 470

• <HTML>
<HEAD>
<TITLE>
New Person: <?php echo "$firstname
$lastname"; ?>
</TITLE>
</HEAD>
<BODY>
I added <?php echo "$firstname
$lastname"; ?> to the
database. Here is the complete list of
people:
<TABLE BORDER>
<TH>Name</TH><TH>Zip Code</TH>
<?php
/*
* Fetch each row in the table, and
display it as an HTML table row.
*/
$rs = mysql_query("SELECT * FROM
PEOPLE", $db);
while($row = mysql_fetch_array($rs))
{
$first = $row["firstname"];
$last = $row["lastname"];
$zip = $row["zipcode"];
echo "<TR>
<TD>$first
$last</TD><TD>$zip</TD>
</TR>";
}
?>
</TABLE>
</BODY>
</HTML>

Cloud Computing Services

• Computing model that enables access to a

shared pool of configurable computer resources

– Can be rapidly provisioned and released with

minimal management effort or service provider

interaction

– Potential to become a game changer; eliminates

financial and technological barriers

Cloud Computing Services (con’t)

Cloud Implementation Types

• Public cloud

– Built by a third-party organization to sell cloud services to

the general public

• Private cloud

– Built by an organization for the sole purpose of servicing its

own needs

• Hybrid cloud

– Part public, part private

• Community cloud

– Built by and for a specific group of organizations that share a

common trade

Characteristics of Cloud Services

• Cloud computing services share a set of guiding

principles

– Ubiquitous access via Internet technologies

– Shared infrastructure

– Lower costs and variable pricing

– Flexible and scalable services

– Dynamic provisioning

– Service orientation

– Managed operations

Types of Cloud Services

Cloud Services: Advantages and Disadvantages

Advantage Disadvantage

Low initial cost of entry. Cloud computing has lower costs of

entry when compared with the alternative of building in

house.

Issues of security, privacy, and compliance. Trusting sensitive

company data to external entities is difficult for most data-cautious

organizations.

Scalability/elasticity. It is easy to add and remove resources

on demand.

Hidden costs of implementation and operation. It is hard to estimate

bandwidth and data migration costs.

Support for mobile computing. Cloud computing providers

support multiple types of mobile computing devices.

Data migration is a difficult and lengthy process. Migrating large

amounts of data to and from the cloud infrastructure can be difficult

and time-consuming.

Ubiquitous access. Consumers can access the cloud

resources from anywhere at any time, as long as they have

Internet access.

Complex licensing schemes. Organizations that implement cloud

services are faced with complex licensing schemes and complicated

service-level agreements.

High reliability and performance. Cloud providers build

solid infrastructures that otherwise are difficult for the

average organization to leverage.

Loss of ownership and control. Companies that use cloud services are

no longer in complete control of their data. What is the responsibility

of the cloud provider if data are breached? Can the vendor use your

data without your consent?

Fast provisioning. Resources can be provisioned on demand

in a matter of minutes with minimal effort.

Organization culture. End users tend to be resistant to change. Do the

savings justify being dependent on a single provider? Will the cloud

provider be around in 10 years?

Managed infrastructure. Most cloud implementations are

managed by dedicated internal or external staff. This allows

the organization’s IT staff to focus on other areas.

Difficult integration with internal IT system. Configuring the cloud

services to integrate transparently with internal authentication and

other internal services could be a daunting task.

SQL Data Services

• Cloud computing-based data management service

– Provides relational data management to companies

– Hosted data management and standard protocols

– Standard protocols

– Common programming interface

• Advantages

– Reliable and scalable at a lower cost than in-house systems

– High level of failure tolerance

– Dynamic and automatic load balancing

– Automated data backup and disaster recovery are included

– Dynamic creation and allocation of processes and storage

References
• Build Your Own Database Driven Web Site

Using PHP & MySQL by Kevin Yank

• Practical PHP 7, MySQL 8, and MariaDB

Website Databases: A Simplified Approach to

Developing Database-Driven Websites

by Adrian W. West and Steve Prettyman

• PHP and MySQL Web Development: PHP

MySQL Web Develo _5 (Developer's Library)

by Luke Welling and Laura Thomson

Homework

• Textbook Chapter 15

• Review Questions 1 thru 9

• Project Final Report

