
Performance Tuning

and Optimization

Database Performance

Covered in

DBA lesson

Focus here

Typical RDBMS Environment

Query Processing

SQL Parsing Phase

• Query is broken down into smaller units
– Original SQL query transformed into slightly different version of original

SQL code which is fully equivalent and more efficient

• Query optimizer: analyzes SQL query
– Finds most efficient way to access data

• Access plans: result of parsing a SQL statement

• Contains a series of steps the DBMS will use to

execute the query and return the result set in the most

efficient way
– Access plan exists for query in SQL cache: DBMS reuses it

– No access plan: optimizer evaluates various plans and chooses one to be

placed in SQL cache for use

SQL Parsing Phase (con’t)

SQL Execution Phase

• All I/O operations indicated in the access

plan are executed

– Locks are acquired

– Data are retrieved and placed in data cache

– Transaction management commands are

processed

SQL Fetching Phase

• Rows of resulting query result set are

returned to client

– DBMS may use temporary table space to store

temporary data

– Database server coordinates the movement of

the result set rows from the server cache to the

client cache

Query Processing Bottlenecks

• Delay introduced in the processing of an I/O

operation that slows the system

– Caused by the:

• CPU

• RAM

• Hard drive(s)

• Network

• Application code

INDEXES

• One can create indexes or unique indexes on tables;

ascending (default) or descending

• Automatically created for primary keys (unique); and for

most RDBMS, for foreign keys

• One or more columns, can be created and dropped

dynamically

• Used for speed of access, sorting, & to force uniqueness

• Not referenced directly in SQL, but used by RDBMS

• CREATE INDEX CITYINDEX

– ON S (City)

Indexes in Access

Indexes and Optimization
• Indexes

– Help speed up data access

– Facilitate searching, sorting, using aggregate

functions, and join operations

– Ordered set of values that contain the index key and

pointers

– More efficient than a full table scan; index data is

preordered and the amount of data is usually much

smaller

Indexes and Optimization (con’t)

Indexes and Optimization (con’t)

• Data sparsity: number of different values a

column could have

– High or low

• Data structures used to implement indexes

– Hash indexes

– B-tree indexes

– Bitmap indexes

• DBMS may determine best type of index to use

Indexing Techniques

• Use Indexes on columns in “Where” clauses; do
not compromise indexes with surrounding
functions (ie UPPER(PName))

• Select *

– FROM P

– WHERE PName = “Shirt”;

• Place an index on PName to speed up such a
search if it is common

• Use indexes sparingly, indexes do take up space
(memory & disk), and also increase table
add/update time

• Use concatenated indexes to speed up

common searches where SELECT and

WHERE clauses have reoccurring ties:

• In the customer table (ID, name, address,

phone, ...):

– SELECT name

– FROM customer

– WHERE phone between 750000 and 7599999;

• An index on the combination phone/name

will not only speed up the search, but the

table itself may not need to be accessed (all

information is in the index file)

• In the customer table (ID, name, address,

zip, areacode, exchange, ...):

– SELECT name

– FROM customer

– WHERE areacode = 901 AND zip = 38138;

• An index on both WHERE conditions will

speed up the search since the query

optimizer should AND the indexes before

going to the table to get the data:

– Index1: areacode/exchange

– Index2: zipcode

Access Indices on Multiple

Fields (columns)
• It's a very useful practice that we sometimes need to store unique data across multiple

columns in a table. One way of doing this is to create a primary key which contains

these columns, but what if we already got a primary key (such as an AutoNumber

field) in the table and we still want to keep and use it? The answer is to create a unique

composite index on these columns. This type of index prevents duplicate values from

being entered into the combination of these columns.
– Open the table in Design View

– Click Indexes button

– Enter the first column for the index (pick a unique index name) – note that the table primary key already shows up as an index

– Enter the second column for the index (don't enter anything in the Index Name field (leave it blank))

– Click the Index Name cell for the index; then, in the Index Properties section of the window, select Yes in the dropdown for the

Unique property

Copyright Dan Brandon

Index Types

• Normally B-tree indexes are used (balanced

trees)

• Cluster indexes - keep commonly used data

indexes together (i.e. customers and their

orders)

• Bitmapped indexes - best for queries on

multiple columns that have only a few

distinct values (i.e. yes/no attributes)

Database Statistics

• Database statistics are measurements about

database objects, such as the number of

rows in a table, number of disk blocks used,

maximum and average row length, number

of columns in each row, and number of

distinct values in each column

• Such statistics provide a snapshot of

database characteristics

Copyright Dan Brandon

Database Statistics (con’t)

• Database statistics can be gathered

manually by the DBA or automatically by

the DBMS

• Many DMBS vendors support the

ANALYZE command in SQL to gather

statistics

• In addition, many vendors have their own

routines to gather statistics
Copyright Dan Brandon

Database Statistics (con’t)

• Database statistics typically include:

– Tables: Number of rows, number of disk blocks

used, row length, number of columns in each row,

etc.

– Indexes: Number and name of columns in the index

key, number of key values in the index, number of

distinct key values in the index key, etc.

– Environment Resources: Logical and physical disk

block size, location and size of data files, and

number of extends per data file

Copyright Dan Brandon

Copyright Dan Brandon

Query Optimization

• Most modern RDBMS have “query optimizers”

• Some are static and some are dynamic (look not only at the

SQL but the sizes of the tables involved)

• Static optimizers are often called “rule based” and use a set

of rules (such as it is better to use and index that to read the

entire table)

• Dynamic optimizers are often called “cost based” and use

statistics (such as the number of rows and the number of

distinct values in index’s) to determine the cost of the

query in computer resources

– Statistics are often gathered at planned intervals and may be

“samples”

Query Optimization (con’t)

• Classification based on timing of

optimization

– Static query optimization: best optimization

strategy is selected when the query is compiled

by the DBMS

• Takes place at compilation time

– Dynamic query optimization: access strategy is

dynamically determined by the DBMS at run

time, using the most up-to-date information

about the database

• Takes place at execution time

Statistics Used by Optimizers

Copyright Dan Brandon

Query Optimization (con’t)

• The RDBMS have a reporting tool

(“Explain” or “Trace”) that will show you

what is going on inside of a query and a

relative “cost”

• However, for the best results you should

properly structure your table design, proper

use of indexes, physical media layout, and

try SQL alternatives

MySQL Workbench Visual Explain

Copyright Dan Brandon

SQL Optimizer Advise (“hints”)

Optimization Considerations

• Most current relational DBMSs perform

automatic query optimization at the server

end

– Most SQL performance optimization techniques

are DBMS-specific and thus rarely portable

• Majority of performance problems are

related to poorly written SQL code

– A carefully written query almost always

outperforms a poorly written one

Copyright Dan Brandon

Optimization Considerations (con’t)

• Do selections before joins

• Denormalization where appropriate (use

triggers to keep database consistent)

• Experiment with different SQL methods

• Use Union, Intersection, Difference (where

available in RDBMS)

• Distributed database queries - covered later !

Optimization Considerations (con’t)

• Guidelines to write efficient conditional expressions in

SQL code

– Use simple columns or literals as operands

– Numeric field comparisons are faster than character, date, and

NULL comparisons

– Equality comparisons are faster than inequality comparisons

– Transform conditional expressions to use literals

– Write equality conditions first when using multiple conditional

expressions

– When using multiple AND conditions, write the condition most

likely to be false first

– When using multiple OR conditions, put the condition most likely

to be true first

– Avoid the use of NOT logical operator

Copyright Dan Brandon

• SELECT customer_ID

– FROM customers

– WHERE area_code IN (901)

– AND zip_code NOT IN (38138, 38139);

• Replace the above with a difference (even if both

area_code and zip_code have indexes, the NOT IN will

cause an entire table search):

• SELECT customer_ID

– FROM customers

– WHERE area_code IN (901)

– MINUS

• (SELECT customer_ID

– FROM customers

– WHERE zip_code IN (38138, 38139);

Copyright Dan Brandon

Limiting Queries

• SELECT *

– FROM customers

– WHERE last_name like ‘S%’ and ROWNUM < 1000

– ORDER BY last_name;

• Will limit result set to 1000, before any sorting

• Some RDBMS will allow you to set overall or by

user query limits (on # of rows or time)

Copyright Dan Brandon

“Real World Queries”
[combinations of joins and nested subqueries]

• SELECT p.adrno,

• p.adradd,

• p.adrdir,

• p.adrstr,

• p.adrsuf,

• p.nbhd_p,

• p.nbhd_s,

• s.saledt as saledate,

• s.price as saleprice,

• a.rtotapr,

• d.source,

• d.sub_source,

• d.source_date,

• d.stories,

• d.fixhalf,

• d.extwall,

• d.cond,

• d.heatsys,

• d.fuel,

• d.style,

• p.class,

• p.zoning,

• d.sfla,

• d.rmtot,

• d.rmbed,

• d.fixbath,

• d.yrblt,

• l.acres

• FROM par p,

• dwel d,

• asm a,

• leg l,

• sales s

• WHERE p.nbhd_p = '#form.nbhd_p#' and

• p.nbhd_s = '#form.nbhd_s#' and

• p.parid = d.parid and

• d.parid = a.parid and

• a.parid = l.parid and

• l.parid = s.parid and

• p.adrno > 0 and

• s.saledt Between #date1# and #date2# and

• s.price > 0.5 * #assessor_amt# and

• d.source in ('1','2') and

• p.class = 'R' and

• d.sfla Between #nMin# And #nMax# and

• d.rmtot > 0 and

• d.rmbed > 0 and

• d.fixbath > 0 and

• d.yrblt > 0 and

• l.acres > 0 and

• (s.numpars is null or s.numpars < 2) and

• d.source = (select max(a.source)

• from dwel a

• where a.parid = p.parid) and

• d.source_date = (select max(b.source_date)

• from dwel b

• where b.parid = d.parid and

• b.source = d.source)

DBMS Performance Tuning
• Managing DBMS processes in primary memory and the

structures in physical storage

– DBMS performance tuning at server end focuses on setting parameters

used for:

• Data cache

• SQL cache

• Sort cache

• Optimizer mode

• In-memory database: store large portions of the database in

primary storage

– These systems are becoming popular

• Increasing performance demands of modern database applications

• Larger memories and diminishing costs

• Technology advances of components

DBMS Performance Tuning (con’t)

• Recommendations for physical storage of databases

– Utilize I/O accelerators

– Use RAID (Redundant Array of Independent Disks) to provide a

balance between performance improvement and fault tolerance

– Minimize disk contention

– Physical allocation to drives (see later database administration

lesson)

• Put high-usage tables in their own table spaces

• Assign separate data files in separate storage volumes for indexes, system,

and high-usage tables

• Take advantage of the various table storage organizations in the database

• Partition tables based on usage

– Apply denormalized tables where appropriate

– Store computed and aggregate attributes in tables

References

• Oracle Database Performance Tuning Tips

& Techniques (Oracle Press) by Richard

Niemiec

• MySQL Query Performance Tuning: A

Systematic Method for Improving

Execution Speeds by Jesper Wisborg Krogh

• Microsoft SQL Server Query Tuning &

Optimization by Benjamin Nevarez
Copyright Dan Brandon

Homework

• Textbook Chapter 11

• Review Questions 1 thru 10

Copyright Dan Brandon

