Performance Tuning
and Optimization

Hardware

Software

Database Performance

RAM

Storage

Network

Operating system
(05)

Network

Application

The fastest possible

Dual-core CPU or higher

"Virtualized Client desktop technologies
could also be used"

The maximum possible to avoid 05
memory to disk swapping

Fast SATA/EIDE hard disk with
sufficient free hard disk space solid state
drives (S5Ds) for faster speed

High-speed connection

64-bit OS for larger address spaces
Fine-tuned for best client application
performance

Fine-tuned for best throughput

Optimize SQL in client application

The fastest possible

Multiple processors (quad-core technology
or higher)

Cluster of networked computers

"Virtualized server technology could be nsed"

The maximum possible to aveid OS5 memory to disk
sWapping

Multiple high-speed, high-capacity disks

Fast disk interface (SAS / SCSI / Firewire / Fibre
Channel)

RAID configuration optimized for throughput
Solid state drives (55Ds) for faster speed
Separate disks for 05, DBEMS, and data spaces

High-speed connection

64-bit OS for larger address spaces
Fine-tuned for best server application performance

Fine-tuned for best thronghput

Optimize DBMS server for best performance

Covered In
DBA lesson

Focus here

Typical RDBMS Environment

DBMS server
computer

Client
computer

Client 1 | ARG 3
\w ﬁ .:;,'. . o e Database

Table spaces

Result set
is sent
back to

client Data files

DBMS processes Database data files
running in primary stored in permanent
memory (RAM) secondary memory

(hard disk)

Query Processing

‘ll'.

SQL cache

bbb

Access plan

* Syntax check

* Naming check

* Access rights check

* Decompose and analyze

* Generate access plan

* Store access plan in SQL cache

= S1111 | ’ Execution

phase

* Execute 1/O operations

llllll’

* Add locks for transaction mgmt
* Retrieve data blocks from data files
* Place data blocks in data cache

Data cache

lllllll‘;’

Fetching
phase

e Generate result set

SQL Parsing Phase

Query Is broken down into smaller units

— Original SQL query transformed into slightly different version of original
SQL code which is fully equivalent and more efficient

Query optimizer: analyzes SQL query

— Finds most efficient way to access data

Access plans: result of parsing a SQL statement

Contains a series of steps the DBMS will use to
execute the query and return the result set in the most

efficient way

— Access plan exists for query in SQL cache: DBMS reuses it

— No access plan: optimizer evaluates various plans and chooses one to be
placed in SQL cache for use

SQL Parsing Phase (con’t)

Table scan (full)

Table access (row ID)

Index scan (range)

Index access (unique)

Nested loop

Merge

Sort

Reads the entire table sequentially, from the first row to the last, one
row at a time (slowest)

Reads a table row directly, using the row ID value (fastest)
Reads the index first to obtain the row IDs and then accesses the
table rows directly (faster than a full table scan)

Used when a table has a unique index in a column

Reads and compares a set of values to another set of values, using a
nested loop style (slow)

Merges two data sets (slow)

Sorts a data set (slow)

SQL Execution Phase

 All I/O operations indicated in the access
plan are executed

— Locks are acquired
— Data are retrieved and placed in data cache

— Transaction management commands are
processed

SQL Fetching Phase

» Rows of resulting query result set are
returned to client

— DBMS may use temporary table space to store
temporary data

— Database server coordinates the movement of
the result set rows from the server cache to the
client cache

Query Processing Bottlenecks

 Delay introduced in the processing of an 1/0
operation that slows the system

— Caused by the:
- CPU
« RAM
 Hard drive(s)
» Network
 Application code

INDEXES

One can create indexes or unique indexes on tables;
ascending (default) or descending

Automatically created for primary keys (unigue); and for
most RDBMS, for foreign keys

One or more columns, can be created and dropped
dynamically

Used for speed of access, sorting, & to force uniqueness
Not referenced directly in SQL, but used by RDBMS
CREATE INDEX CITYINDEX

— ON S (City)

Indexes In Access

Field rMarme Daka Twpe
Texk Salespersan ID
Texk Salesperson MHName
Texk L |

Genceral I Lookup I

Field Size =0
Formak

Inpuk FMask

apkicon

C=Fault Walue

validation Rul=
walidation Texk
Fequired V==
Gllowe Tera Lengkh Mo
Indexed |

0 P
Yes [(Duplicatkes CED
Yes (MRNo Duplicakes)

Indexes and Optimization

e Indexes

— Help speed up data access

— Facilitate searching, sorting, using aggregate
functions, and join operations

— Ordered set of values that contain the index key and
pointers

— More efficient than a full table scan; index data Is
preordered and the amount of data is usually much
smaller

Indexes and Optimization (con’t

CUSTOMER TABLE

STATE NDX INDEX (14,786 rows)

[Row 1D ‘CUS CODECUS
1

—1 ,

[K
i
IF
I
I

=1
"

Indexes and Optimization (con’t)

» Data sparsity: number of different values a
column could have

— High or low

 Data structures used to implement indexes
— Hash indexes
— B-tree indexes
— Bitmap indexes

 DBMS may determine best type of index to use

Indexing Techniques

Use Indexes on columns 1n “Where” clauses; do
not compromise indexes with surrounding
functions (ie UPPER(PName))

Select * o\
— FROM P >
— WHERE PName = “Shirt”;

Place an index on PName to speed up such a
search If It Is common

Use indexes sparingly, indexes do take up space
(memory & disk), and also increase table
add/update time

 Use concatenated indexes to speed up
common searches where SELECT and

WHERE clauses have reoccurring ties:

* |n the customer table (1D, name, address,
phone, ...):
— SELECT name

— FROM customer
— WHERE phone between 750000 and 7599999;

 An index on the combination phone/name
will not only speed up the search, but the
table itself may not need to be accessed (all
Information is in the index file)

* |n the customer table (1D, name, address,
ZIp, areacode, exchange, ...):

— SELECT name
— FROM customer
— WHERE areacode = 901 AND zip = 38138;

 An index on both WHERE conditions will
speed up the search since the query
optimizer should AND the indexes before
going to the table to get the data:

— Index1: areacode/exchange
— Index2: zipcode

Access Indices on Multiple
Fields (columns)

It's a very useful practice that we sometimes need to store unique data across multiple
columns in a table. One way of doing this is to create a primary key which contains
these columns, but what if we already got a primary key (such as an AutoNumber
field) in the table and we still want to keep and use it? The answer is to create a unigue
composite index on these columns. This type of index prevents duplicate values from

being entered into the combination of these columns.

— Open the table in Design View

— Click Indexes button

— Enter the first column for the index (pick a unique index name) — note that the table primary key already shows up as an index

— Enter the second column for the index (don't enter anything in the Index Name field (leave it blank))

— Click the Index Name cell for the index; then, in the Index Properties section of the window, select Yes in the dropdown for the
Unique property

ex Name Field Name Sort Order
¥ | PrimaryKey ID Ascending
Uidx_Products Product_Name Ascending
Category_ID Ascending

Index Properties

Primary No
Unique Yes X! | The name for this index. Each index can use up
Ignore MNulls No to 10 fields.

Index Types

« Normally B-tree indexes are used (balanced
trees)

 Cluster indexes - keep commonly used data
Indexes together (i.e. customers and their
orders)

 Bitmapped indexes - best for queries on
multiple columns that have only a few
distinct values (i.e. yes/no attributes)

Database Statistics

« Database statistics are measurements about
database objects, such as the number of
rows In a table, number of disk blocks used,
maximum and average row length, number
of columns in each row, and number of
distinct values in each column

 Such statistics provide a snapshot of
database characteristics

Copyright Dan Brandon

Database Statistics (con’t)

 Database statistics can be gathered
manually by the DBA or automatically by

the DBMS

« Many DMBS vendors support the
ANALYZE command in SQL to gather
statistics

* |n addition, many vendors have their own
routines to gather statistics

Copyright Dan Brandon

Database Statistics (con’t)

 Database statistics typically include:

— Tables: Number of rows, number of disk blocks
used, row length, number of columns in each row,
etc.

— Indexes: Number and name of columns in the index
key, number of key values in the index, number of
distinct key values in the index key, etc.

— Environment Resources: Logical and physical disk
block size, location and size of data files, and
number of extends per data file

Copyright Dan Brandon

Query Optimization

Most modern RDBMS have “query optimizers”

Some are static and some are dynamic (look not only at the
SQL but the sizes of the tables involved)

Static optimizers are often called “rule based” and use a set
of rules (such as it is better to use and index that to read the
entire table)

Dynamic optimizers are often called “cost based”” and use
statistics (such as the number of rows and the number of
distinct values 1n index’s) to determine the cost of the
query in computer resources

— Statistics are often gathered at planned intervals and may be
“samples”

Copyright Dan Brandon

Query Optimization (con’t)

» Classification based on timing of

optimization

— Static query optimization: best optimization
strategy Is selected when the query is compiled
by the DBMS

 Takes place at compilation time

— Dynamic guery optimization: access strategy Is

dynamically determined by the DBMS at run

time, using the most up-to-date information
about the database

 Takes place at execution time

Statistics Used by Optimizers

Tables

Indexes

Environment Resources

Number of rows, number of disk blocks used, row length, number of columns in
each row, number of distinct values in each column, maximum value in each
column, minimum value in each column, and columns that have indexes

Number and name of columns in the index key, number of key values in the index,

number of distinct key values in the index key, histogram of key values in an index,
and number of disk pages used by the index

Logical and physical disk block size, location and size of data files, and number of
extends per data file

Query Optimization (con’t)

 The RDBMS have a reporting tool
(“Explain” or “Trace”) that will show you
what Is going on inside of a query and a
relative “cost”

» However, for the best results you should
properly structure your table design, proper
use of indexes, physical media layout, and
try SQL alternatives

Copyright Dan Brandon

MySQL Workbench Visual Explain

Tosls

Query Completed

SQL Optimizer Advise (“hints”)

ALL ROWS

FIRST ROWS

INDEX(name)

Instructs the optimizer to minimize the overall execution time—that is, to minimize the time
needed to return all rows in the query result set. This hint is generally used for batch mode
processes. For example:

SELECT [*+ AL ROWS */ *

FROM PRODUCT

WHERE P QOH < 10;

Instructs the optimizer to minimize the time needed to process the first set of rows—that is,

to minimize the time needed to return only the first set of rows in the query result set. This hint
is generally used for interactive mode processes. For example:

SELECT /*+ FIRST ROWS */ *

FROM PRODUCT

WHERE P QOH < 10;

Forces the optimizer to use the P QOH NDZX index to process this query. For example:
SELECT [*+ INDEX(P_QOH NDX) */ *

FROM PRODUCT

WHERE P QOH <10

Optimization Considerations

» Most current relational DBMSs perform
automatic query optimization at the server
end
— Most SQL performance optimization technigues

are DBMS-specific and thus rarely portable

« Majority of performance problems are
related to poorly written SQL code

— A carefully written query almost always
outperforms a poorly written one

Optimization Considerations (con’t)

* Do selections before joins

» Denormalization where appropriate (use
triggers to keep database consistent)

« Experiment with different SQL methods

« Use Union, Intersection, Difference (where
avallable in RDBMS)

» Distributed database queries - covered later !

Copyright Dan Brandon

Optimization Considerations (con’t)

« Guidelines to write efficient conditional expressions in
SQL code

— Use simple columns or literals as operands

— Numeric field comparisons are faster than character, date, and
NULL comparisons

— Equality comparisons are faster than inequality comparisons
— Transform conditional expressions to use literals

— Write equality conditions first when using multiple conditional
expressions

— When using multiple AND conditions, write the condition most
likely to be false first

— When using multiple OR conditions, put the condition most likely
to be true first

— Avoid the use of NOT logical operator

SELECT customer_ID

— FROM customers

— WHERE area_code IN (901)

— AND zip_code NOT IN (38138, 38139);

Replace the above with a difference (even if both
area_code and zip_code have indexes, the NOT IN will
cause an entire table search):

SELECT customer _ID
— FROM customers
— WHERE area_code IN (901)
— MINUS
» (SELECT customer_ID
— FROM customers
— WHERE zip_code IN (38138, 38139);

Copyright Dan Brandon

Limiting Queries

« SELECT *
— FROM customers
— WHERE last name like ‘S%’ and ROWNUM < 1000
— ORDER BY last_name;

« Will limit result set to 1000, before any sorting

« Some RDBMS will allow you to set overall or by
user query limits (on # of rows or time)

Copyright Dan Brandon

“Real World Queries™

[combinations of joins and nested subqueries]

SELECT p.adrno,

FROM

p.adradd,
p.adrdir,
p.adrstr,
p.adrsuf,
p.nbhd_p,
p.nbhd_s,

s.saledt as saledate,
s.price as saleprice,

a.rtotapr,
d.source,
d.sub_source,
d.source_date,
d.stories,
d.fixhalf,
d.extwall,
d.cond,
d.heatsys,
d.fuel,
d.style,
p.class,
p.zoning,
d.sfla,
d.rmtot,
d.rmbed,
d.fixbath,
d.yrblt,
l.acres
parp,
dwel d,
ESER

leg I,
sales s

WHERE

p.nbhd_p = "#form.nbhd_p#' and
p.nbhd_s = #form.nbhd_s#' and
p.parid = d.parid and
d.parid = a.parid and
a.parid = l.parid and
I.parid = s.parid and
p.adrno >0 and
s.saledt Between #datel# and #date2# and
s.price > 0.5 * #assessor_amt# and
d.source in ('1','2") and
p.class ='R'and
d.sfla Between #nMin# And #nMax# and
d.rmtot > 0 and
d.rmbed > 0 and
d.fixbath > 0 and
d.yrblt > 0 and
l.acres > 0 and
(s.numpars is null or s.numpars < 2) and
d.source = (select max(a.source)
from dwel a
where a.parid = p.parid) and
d.source_date = (select max(b.source_date)
from dwel b
where b.parid = d.parid and
b.source = d.source)

Copyright Dan Brandon

DBMS Performance Tuning

« Managing DBMS processes in primary memory and the
structures in physical storage
— DBMS performance tuning at server end focuses on setting parameters
used for:
 Data cache
« SQL cache
 Sort cache
» Optimizer mode

* In-memory database: store large portions of the database in
primary storage
— These systems are becoming popular
« Increasing performance demands of modern database applications

 Larger memories and diminishing costs
» Technology advances of components

DBMS Performance Tuning (con’t)

« Recommendations for physical storage of databases

— Utilize I/0 accelerators

— Use RAID (Redundant Array of Independent Disks) to provide a
balance between performance improvement and fault tolerance

— Minimize disk contention

— Physical allocation to drives (see later database administration
lesson)
 Put high-usage tables in their own table spaces

 Assign separate data files in separate storage volumes for indexes, system,
and high-usage tables

» Take advantage of the various table storage organizations in the database
« Partition tables based on usage

— Apply denormalized tables where appropriate
— Store computed and aggregate attributes in tables

References

 Oracle Database Performance Tuning Tips
& Techniques (Oracle Press) by Richard
Niemiec

 MySQL Query Performance Tuning: A
Systematic Method for Improving
Execution Speeds by Jesper Wisborg Krogh

» Microsoft SQL Server Query Tuning &
Optimization by Benjamin Nevarez

Copyright Dan Brandon

Homework

* Textbook Chapter 11
* Review Questions 1 thru 10

Copyright Dan Brandon

