
Transaction & Concurrency

Control

SQL Transaction and Data Control

ACID Properties

• ACID (Atomicity, Consistency, Isolation, Durability) is a

set of properties of database transactions

• In the context of databases, a single logical operation on

the data is called a “transaction”

• A single transaction may involve changes to multiple

database tables

• These are properties of a “reliable” DBMS, and starting

in the late 1970s vendors developed technologies to

achieve them automatically

Database “Acid” Properties

Transactions

• A transaction is one or more database

updates that must either succeed or fail as a

group; it is an indivisible logical unit of

work

• For example a transaction to transfer money

from one account to another must complete

both the reduction in the balance of one

account and the increase in the balance of

the other account

• Another common example is the processing of an

order:

– Add row to Order table

– Add multiple rows to LineItem table

– Update rows of product table to decrease

“quantity on hand”

• SQL uses the “COMMIT” command to determine

the end of a transaction

• Transaction control is implemented via different

types of locks (i.e. read locks or write locks) and

possibly with logging of changes to the database

The Transaction Logs

• Keeps track of all transactions that update the

database

• DBMS uses the information stored in a log for:

• Recovery requirement triggered by a

ROLLBACK statement

• Program’s abnormal termination

• System failures (hardware, power, etc.)

• Some RDBMS’s may have one log or a separate

before and after log

Before Image

• The before image log keeps a copy of every

database row before it was changed by a

transaction, including the transaction id, type of

change, and timestamp

• This log is used for rollback (undo) of transactions

• The log may also contain indexing (or physical)

pointers to thread transactions

• This log may also be used for “read consistency”

services

After Image

• The after image log keeps a copy of every

database row after it was changed by a

transaction, including the transaction id, type of

change, and timestamp

• This log used for rollforward (redo)

• Checkpoints are noted in the log

• The log may also contain indexing (or physical)

pointers to thread transactions

• This log may also be used for replication services

Checkpoint

• For maximum efficiency, database changes are not

written to disk as they occur

• Database is paged into memory, and pages are

written back to disk only as necessary

• A checkpoint synchronizes the disk copy(s) and

memory (paged) copy of a database; all database

activity is paused for a checkpoint

• The disk copy is typically mirrored (or RAID

used) to minimize the effect of disk hardware

problems

Media (or other platform) Failure

(rollforward)

• To rollforward (or redo

transactions), “after images” since

the last checkpoint are applied to

the database

Application Failure

(Rollback)

• To rollback (or undo one or

more transactions), each

changed row is replaced by its

before image version

Lost Update Problem

(The account should have $650)
Instruction T1’s Balance T2’s Balance Database

Balance
Status before the

update

500

T1 reads the

account record

500 500

T2 reads the

account record

500 500 500

T1 adds $50 550 500 500

T2 adds $100 550 600 500

T1 updates the

account record

550 600 550

T2 updates the

account record

550 600 600

Serializable

• Most modern multi-user databases can

guarantee “Serializable” (isolated)

transactions

• That is the effect of a transaction T1 will be

preserved and not be seen by another

transaction T2 until T1 has successfully

completed

• In effect all concurrent transactions will

product the same result as if they had all run

one at a time in a serial manner

Concurrency Control

• Coordination of the simultaneous transactions

execution in a multiuser database system

– Objective: ensures serializability of transactions

in a multiuser database environment

• Important because the simultaneous execution of

transactions over a shared database can create

several data integrity and consistency problems

– Three main problems are lost updates,

uncommitted data, and inconsistent retrievals

Concurrency Control (con’t)

• Serializability is one method describing types

and levels of concurrency control -

maintaining database integrity with

concurrent users

• Concurrency control is implemented

differently in different RDBMS’s usually via

locking, timestamping, versioning, and/or

version control numbering, but the goal of

each is to allow for parallel activity without

compromising the integrity of the database

Isolation Level

• The SET TRANSACTION SQL command can set

an isolation level

• There are several levels (varies by vendor):
– SERIALIZABLE (normally the default, exclusive locking until

after commit) – reads/locks on all involved rows of tables involved

in a transaction

– READ UNCOMMITTED (no locks, “dirty read”, can read

uncommitted rows)

– READ COMMITTED (only read committed rows, non exclusive

lock [others can read or process])

– READ REPEATABLE (shared locking, others can read but not

update) - reads on all rows of a result set are repeatable

Isolation Level (con’t)

• If any level other than the first is chosen

(perhaps for efficiency reasons), then the

application needs to take care of

concurrency control itself via exclusive

(write) lock statements on any data retrieved

for updating purposes

Dirty Read

• Suppose transaction T1 performs an update

on some row, transaction T2 then retrieves

that row, and transaction T1 then terminates

for some reason (rollback)

• Transaction T2 has seen a row that no

longer exists, and in a sense that never

existed

Nonrepeatable Read

• Suppose transaction T1 retrieves a row,

transaction T2 then updates that row, and

then transaction T1 retrieves that same row

again

• Transaction T1 has now retrieved the same

row twice but seen different version

Phantoms

• Suppose transaction T1 retrieves

the set of all rows that satisfy

some condition (Price > 50)

• Suppose that T2 then inserts a

new row satisfying the same

condition

• If T1 now (as part of the same

transaction) repeats its retrieval

requests, it will see a row that did

not previously exists

Violations of Serializability

Isolation Level dirty read nonrepeatable

read

phantoms

Read Uncommitted Y Y Y

Read Committed N Y Y

Repeatable Read N N Y

Serializable N N N

COMMIT/ROLLBACK

(Implicit Locking)

• Implicit database locking is accomplished by using

Serializable isolation level with use of COMMIT

and ROLLBACK

• Issue COMMIT command if all parts of transaction

are successful

• Issue ROLLBACK command if all parts are not

successful

Two Phase Locking

• Most RDMS use two phase locking on

transactions; transactions acquire locks

(write/exclusive locks for rows to be

updated, and shared/read locks for rows to

be read), but once first lock is relinquished,

no others are obtained

Two Phase Locking (con’t)

Deadlock

• Two (or more) users are waiting on access to

rows (or tables) that the other has locked
– Suppose that T1 and T2 are both to update row A and row B

– T1 locks A, while T2 locks B

– Then T1 tries to lock B and goes into a wait state; T2 tries to

lock A and goes into a wait state

• Sometimes called “deadly embrace”

• RDBMS have various schemes for detecting and

removing deadlock typically by canceling one

transaction

Lock Granularity

• Some RDBMS’s can lock at the table, row, and

field levels

• Many RDMS cannot lock at the row level, only:
– Database level, table level, or page level (part of an OS file)

• Makes deadlock situations more frequent

• Makes for slower response times

• Resolving lock conflicts:
– table subdivision

– key division

Database Level Locking

Table Level Locking

Page Level Locking

Row Level Locking

Lock Types
• Binary lock

– Two states: locked (1) and unlocked (0)

• If an object is locked by a transaction, no other

transaction can use that object

• If an object is unlocked, any transaction can lock the

object for its use

• Exclusive lock

– Access is reserved for the transaction that locked the object

• Shared lock

– Concurrent transactions are granted read access on the basis

of a common lock

Other Concurrency Mechanisms

• Timestamps - check last update timestamp

to see if any other transaction updated row

• Before/After comparisons - check all fields

(or just an update # field) [“optimistic

control”]

• Normally used for interactive situations, so

that a terminal (or client) operator cannot

leave a screen in an idle mode with rows

locked

Snapshots
• Snapshots offer a mechanism for read

consistency without table locks

• Two methods:

– Physical snapshot

– Using rollback logs (described earlier)

• For a report, the RDBMS reads each row

and checks to see (in the rollback logs) if it

had been modified since the time (or system

commit number) of the run start

Choosing Isolation Level

• For most reports, uncommitted reads are ok; if the

report had to be fully accurate as of a point in

time, then committed read level would be

appropriate

• For maintenance purposes, where a single row is

to be updated, then repeatable read is appropriate

so that other users cannot update the same record

at the same time

• For transactions involving multiple tables and

rows, full isolation level is appropriate

Concurrency Control with

Optimistic Methods
• Optimistic approach: based on the assumption that the

majority of database operations do not conflict

– Does not require locking or time stamping techniques

– Transaction is executed without restrictions until it is

committed

– Usually implement in the application program rather than the

RDBMS

• Phases of optimistic approach for multiple table

updates:

– Read

– Validation

– Write

Optimistic Methods (con’t)

• Read phase

– Transaction:

• Reads the database

• Executes the needed computations

• Makes the updates to a private copy of the database values

• Validation phase

– Transaction is validated to ensure that the changes made will

not affect the integrity and consistency of the database

• Write phase

– Changes are permanently applied to the database

Optimistic Methods (con’t)

• Single table optimistic method

1. Read record (including update counter)

2. Make changes in temporary space

3. Re-read record to see if update counter the

same

4. If counter the same, write record with

incremented update counter

5. If counter not the same, go back to step 1

Update Options

• Database updating options (CACHE on/off)

– Deferred-write technique or deferred (cache) update

• Transaction operations do not immediately

update the physical database

• Only transaction log is updated

– Write-through technique or immediate update

• Database is immediately updated by transaction

operations during transaction’s execution

Access & MySql

• Some products may not directly offer transaction

control and/or concurrency control

• Only recently did Access include a simple type of

concurrency control, but just for some simple

forms created via their wizards

• With MySql, you can choose to use tables with or

without transaction control; transaction control

requires more resources (InnoDB)

• You might best handle some concurrency control

in your application programs via before/after

comparisons

MySQL ISAM vs InnoDB
• Data integrity and foreign key constraints

Foreign keys establish a relationship between columns in one table and those in another. For example, you

might create a library application where books can be loaned to members. A foreign key constraint would

ensure that a member existed before a book could be checked-out. Similarly, removing a user would not be

possible until all their books were returned.

• 2. Transactions

InnoDB tables support transactions. A transaction allows multiple SQL commands to be treated as a single and

reliable unit.
– Consider a banking application where you are transferring money from one account to another. The transaction would only be committed if both accounts were

altered successfully. If anything failed, the database would be rolled-back to a previous state.

– In addition, InnoDB tables recover well from crashes. MySQL will analyze the log files to ensure the data is accurate so there is no need to repair tables.

• 3. Row-level locking

InnoDB uses row-level rather than table-level locking. If a row is being inserted, updated or deleted, only

changes to the same row are held up until that request has completed. Tables that receive more updates than

selects may be faster with InnoDB.

• Creating an InnoDB table is no more complex than MyISAM, e.g.

• CREATE TABLE employee (id smallint(5) unsigned NOT NULL, firstname varchar(30), lastname

varchar(30), PRIMARY KEY (id)) ENGINE=InnoDB; However, designing that database with foreign key

relationships does require more effort. Database novices will find MyISAM easier because it has fewer features.

• No full-text search

InnoDB tables do not support full-text searches; it is not easy to match one or more keywords against multiple

columns.

• Slower performance

If your application is primarily selecting data and performance is a priority, MyISAM tables will normally be

faster and use fewer system resources.

References

• Transaction Processing: Management of the Logical

Database and its Underlying Physical Structure (Data-

Centric Systems and Applications) by Seppo

Sippu and Eljas Soisalon-Soininen

• Transactional Information Systems: Theory,

Algorithms, and the Practice of Concurrency Control

and Recovery (The Morgan Kaufmann Series in Data

Management Systems) by Gerhard

Weikum and Gottfried Vossen

• Concurrency Control and Recovery in Database

Systems by Philip Bernstein, Vassos Hadzilacos, et al

Homework

• Textbook Chapter 10

• Review Questions 1 thru 13

