Transaction & Concurrency
Control

SQL Transaction and Data Control

Transaction Control
Language

COMMIT Permanently saves data changes
ROLLBACK Restores data to 1ts original values
Data Control Language

GRANT Gives a user permission to take a system
action or access a data object

REVOKE Removes a previously granted permission
from a user

ACID Properties

ACID (Atomicity, Consistency, Isolation, Durability) Is a
set of properties of database transactions

In the context of databases, a single logical operation on
the data 1s called a “transaction”

A single transaction may involve changes to multiple
database tables

These are properties of a “reliable” DBMS, and starting
In the late 1970s vendors developed technologies to
achieve them automatically

Database “Acid” Properties

Transactions

» A transaction Is one or more database
updates that must either succeed or fail as a
group; It Is an indivisible logical unit of
work

 For example a transaction to transfer money
from one account to another must complete
both the reduction in the balance of one
account and the increase In the balance of
the other account

« Another common example is the processing of an
order:

— Add row to Order table
— Add multiple rows to Lineltem table

— Update rows of product table to decrease
“quantity on hand”

 SQL uses the “COMMIT” command to determine
the end of a transaction

 Transaction control is Implemented via different
types of locks (i.e. read locks or write locks) and
possibly with logging of changes to the database

The Transaction Logs

» Keeps track of all transactions that update the
database

« DBMS uses the information stored in a log for:

» Recovery requirement triggered by a
ROLLBACK statement

* Program’s abnormal termination
 System failures (hardware, power, etc.)

 Some RDBMS’s may have one log or a separate
before and after log

Before Image

The before image log keeps a copy of every
database row before It was changed by a
transaction, including the transaction id, type of
change, and timestamp

This log is used for rollback (undo) of transactions

The log may also contain indexing (or physical)
pointers to thread transactions

This log may also be used for “read consistency”
services

After Image

The after image log keeps a copy of every
database row after i1t was changed by a
transaction, including the transaction id, type of
change, and timestamp

C
T

nis log used for rollforward (redo)
neckpoints are noted in the log

ne log may also contain indexing (or physical)

pointers to thread transactions
This log may also be used for replication services

Checkpoint

For maximum efficiency, database changes are not
written to disk as they occur

Database Is paged into memory, and pages are
written back to disk only as necessary

A checkpoint synchronizes the disk copy(s) and
memory (paged) copy of a database; all database
activity Is paused for a checkpoint

The disk copy Is typically mirrored (or RAID
used) to minimize the effect of disk hardware
problems

Media (or other platform) Failure
(rollforward)

 To rollforward (or redo
transactions), “after images” since
the last checkpoint are applied to
the database

Application Failure
(Rollback)

» To rollback (or undo one or
more transactions), each
changed row Is replaced by Its
before iImage version

ost Update Problem
(The account should have $650)

Instruction T1’s Balance T2’s Balance Database
Balance
Status before the 500
update
T1 reads the 500 500
account record
T2 reads the 500 500 500
account record
T1 adds $50 550 500 500
T2 adds $100 550 600 500
T1 updates the 550 600 550
account record
T2 updates the 550 600 600

account record

Serializable

 Most modern multi-user databases can U
guarantee “Serializable” (isolated)
transactions

 That Is the effect of a transaction T1 will be
preserved and not be seen by another
transaction T2 until T1 has successfully
completed

e |n effect all concurrent transactions will
product the same result as If they had all run
one at a time 1n a serial manner

Concurrency Control

e Coordination of the simultaneous transactions
execution in a multiuser database system

— ODbjective: ensures serializability of transactions
In a multiuser database environment

 |mportant because the simultaneous execution of
transactions over a shared database can create
several data integrity and consistency problems

— Three main problems are lost updates,
uncommitted data, and inconsistent retrievals

Concurrency Control (con’t)

» Serializability 1s one method describing types
and levels of concurrency control -
maintaining database integrity with
concurrent users

« Concurrency control is implemented
differently in different RDBMS’s usually via
locking, timestamping, versioning, and/or
version control numbering, but the goal of
each is to allow for parallel activity without
compromising the integrity of the database

|solation Level

« The SET TRANSACTION SQL command can set
an isolation level

» There are several levels (varies by vendor):

SERIALIZABLE (normally the default, exclusive locking until
after commit) — reads/locks on all involved rows of tables involved
In a transaction

READ UNCOMMITTED (no locks, “dirty read”, can read
uncommitted rows)

READ COMMITTED (only read committed rows, non exclusive
lock [others can read or process])

READ REPEATABLE (shared locking, others can read but not
update) - reads on all rows of a result set are repeatable

Isolation Level (con’t)

* |f any level other than the first is chosen
(perhaps for efficiency reasons), then the
application needs to take care of
concurrency control itself via exclusive
(write) lock statements on any data retrieved

for updating purposes

Dirty Read s
N
 Suppose transaction T1 performs an update
on some row, transaction T2 then retrieves
that row, and transaction T1 then terminates
for some reason (rollback)

 Transaction T2 has seen a row that no
longer exists, and in a sense that never
existed

Transaction B

Nonrepeatable Read

» Suppose transaction T1 retrieves a row,
transaction T2 then updates that row, and
then transaction T1 retrieves that same row
again

 Transaction T1 has now retrieved the same
row twice but seen different version

Phantoms

» Suppose transaction T1 retrieves
the set of all rows that satisfy
some condition (Price > 50)

» Suppose that T2 then inserts a
new row satisfying the same
condition

 If T1 now (as part of the same
transaction) repeats its retrieval
requests, it will see a row that did
not previously exists

Transaction B

write (where x = 15)

Violations of Serializability

Isolation Level dirty read nonrepeatable phantoms
read

Read Uncommitted Y Y Y
Read Committed N Y Y
Repeatable Read N \ Y

N N

Serializable N

COMMIT/ROLLBACK
(Implicit Locking)

 Implicit database locking is accomplished by using
Serializable isolation level with use of COMMIT

and ROLLBACK

 |ssue COMMIT command if all parts of transaction
are successful

 |ssue ROLLBACK command if all parts are not
successful

Two Phase Locking

» Most RDMS use two phase locking on
transactions; transactions acquire locks
(write/exclusive locks for rows to be
updated, and shared/read locks for rows to
be read), but once first lock iIs relinquished,
no others are obtained

Two Phase Locking (con’t)

Acquire Release
lock lock

Acquire Release
lock lock

P

Operations

Locked
Growing phase phase Shrinking phase

Deadlock

« Two (or more) users are waiting on access to
rows (or tables) that the other has locked

— Suppose that T1 and T2 are both to update row A and row B
— T1 locks A, while T2 locks B

— Then T1 tries to lock B and goes into a walt state; T2 tries to
lock A and goes Into a wait state

« Sometimes called “deadly embrace”

« RDBMS have various schemes for detecting and

removing deadlock typically by canceling one
transaction

Lock Granularity

Some RDBMS’s can lock at the table, row, and
field levels

Many RDMS cannot lock at the row level, only:
— Database level, table level, or page level (part of an OS file)

Makes deadlock situations more frequent
Makes for slower response times

Resolving lock conflicts:

— table subdivision
— key division

Database Level Locking

Transaction 1 (T1)
(Update Table A)
Lock database request sy

Locked h O K s

Unlocked

Payroll Database

P
{
]

Transaction 2 (T2)
(Update Table B)

A | ock database request

| e—\\' AT

P—) K w—p- | ocked

Unlocked

Table Level Locking

Transaction 1 (T1)
(Update row 5)

Lock Table A request we—(-
Locked — () K s—

Unlocked (end of transaction 1)

Payroll Database

Table A

Transaction 2 (T2)
(Update row 30)

e Lock Table A request

Seesssssm—— \WAIT

s OK melpp- | ocked

Unlocked
(end of transaction 2)

Page Level Locking

, Payroll Database _
Transaction 1 (T1) | Transaction 2 (T2)
(Update row 1) Table A (Update rows 5 and 2)

Lock page 1 request sl
Locked < OK @ L 0k page 2 request
o () el | 0cked

| ck page 1 request

e—— AT

Unlock page 1 o O w0 cked
(end of transaction)

Unlock pages 1 and 2
(end of transaction)

Row number

Row Level Locking

Payroll Database

Transaction 1 (T1) : Transaction 2 (T2)
(Update row 1) Table A (Update row 2)

Lock row 1 request el

@ | 0 ck row 2 request

Locked mm QO mmm
‘e | P O sl | 0cked

Unlock row 1 A8 1

(end of transaction)
Unlock row 2

(end of transaction)

Row number

Lock Types

 Binary lock
— Two states: locked (1) and unlocked (0)

« If an object is locked by a transaction, no other
transaction can use that object

» If an object is unlocked, any transaction can lock the
object for Its use

 Exclusive lock
— Access Is reserved for the transaction that locked the object

e Shared lock

— Concurrent transactions are granted read access on the basis
of a common lock

Other Concurrency Mechanisms

« Timestamps - check last update timestamp
to see If any other transaction updated row

» Before/After comparisons - check all fields

(or just an update # field) [“optimistic
control”]

* Normally used for interactive situations, so
that a terminal (or client) operator cannot

leave a screen In an 1dle mode with rows
locked

Snapshots

 Snapshots offer a mechanism for read
consistency without table locks

» Two methods:
— Physical snapshot
— Using rollback logs (described earlier)

 For areport, the RDBMS reads each row
and checks to see (in the rollback logs) If it
had been modified since the time (or system
commit number) of the run start

Choosing Isolation Level

» For most reports, uncommitted reads are ok; if the
report had to be fully accurate as of a point in
time, then committed read level would be
appropriate

« For maintenance purposes, where a single row Is
to be updated, then repeatable read Is appropriate
so that other users cannot update the same record
at the same time

 For transactions involving multiple tables and
rows, full isolation level is appropriate

Concurrency Control with
Optimistic Methods

» Optimistic approach: based on the assumption that the
majority of database operations do not conflict
— Does not require locking or time stamping techniques

— Transaction iIs executed without restrictions until it Is
committed

— Usually implement in the application program rather than the
RDBMS
» Phases of optimistic approach for multiple table
updates:
— Read
— Validation
— Write

Optimistic Methods (con’t)

» Read phase

— Transaction:
» Reads the database
« Executes the needed computations
« Makes the updates to a private copy of the database values

 Validation phase

— Transaction is validated to ensure that the changes made will
not affect the integrity and consistency of the database

» Write phase
— Changes are permanently applied to the database

Optimistic Methods (con’t)

» Single table optimistic method
1. Read record (including update counter)
2. Make changes In temporary space

3. Re-read record to see if update counter the
same

4. If counter the same, write record with
Incremented update counter

5. If counter not the same, go back to step 1

Update Options

 Database updating options (CACHE on/off)
— Deferred-write technigue or deferred (cache) update

» Transaction operations do not immediately
update the physical database

 Only transaction log is updated
— Write-through technique or immediate update

 Database Is immediately updated by transaction
operations during transaction’s execution

Access & MySq|l

Some products may not directly offer transaction
control and/or concurrency control

Only recently did Access include a simple type of
concurrency control, but just for some simple
forms created via their wizards

With MySql, you can choose to use tables with or
without transaction control; transaction control
requires more resources (InnoDB)

You might best handle some concurrency control
In your application programs via before/after
comparisons

MySQL ISAM vs InnoDB

Data integrity and foreign key constraints

Foreign keys establish a relationship between columns in one table and those in another. For example, you
might create a library application where books can be loaned to members. A foreign key constraint would
ensure that a member existed before a book could be checked-out. Similarly, removing a user would not be
possible until all their books were returned.

2. Transactions
InnoDB tables support transactions. A transaction allows multiple SQL commands to be treated as a single and

reliable unit.

- Consider a banking application where you are transferring money from one account to another. The transaction would only be committed if both accounts were
altered successfully. If anything failed, the database would be rolled-back to a previous state.

- In addition, InnoDB tables recover well from crashes. MySQL will analyze the log files to ensure the data is accurate so there is no need to repair tables.

3. Row-level locking

InnoDB uses row-level rather than table-level locking. If a row is being inserted, updated or deleted, only
changes to the same row are held up until that request has completed. Tables that receive more updates than
selects may be faster with InnoDB.

Creating an InnoDB table is no more complex than MyISAM, e.g.

CREATE TABLE employee (id smallint(5) unsigned NOT NULL, firstname varchar(30), lastname
varchar(30), PRIMARY KEY (id)) ENGINE=InnoDB; However, designing that database with foreign key
relationships does require more effort. Database novices will find MylISAM easier because it has fewer features.

No full-text search
InnoDB tables do not support full-text searches; it is not easy to match one or more keywords against multiple
columns.

Slower performance
If your application is primarily selecting data and performance is a priority, MylISAM tables will normally be
faster and use fewer system resources.

References

 Transaction Processing: Management of the Logical
Database and its Underlying Physical Structure (Data-
Centric Systems and Applications) by Seppo
Sippu and Eljas Soisalon-Soininen

 Transactional Information Systems: Theory,
Algorithms, and the Practice of Concurrency Control
and Recovery (The Morgan Kaufmann Series in Data
Management Systems) by Gerhard
Weikum and Gottfried Vossen

« Concurrency Control and Recovery in Database
Systems by Philip Bernstein, VVassos Hadzilacos, et al

Homework

« Textbook Chapter 10
* Review Questions 1 thru 13

