Database Design

The Information System

» The database Is part of a larger whole known as
an information system (IS)
— Provides for data collection, storage, and retrieval

 People, hardware, and software
 Database(s), application programs, and procedures

 Systems analysis: establishes need for and
extent of information system

— Systems development: process of creating
Information system

The Information System (con’t)

 Performance factors of an information system
— Database design and implementation

— Application design and implementation
« User interface
 Business logic

— Administrative procedures
 Control and security
 Database development
— Process of database design and its implementation

Systems Development Life Cycle

(SDLC)

 Traces history of an information system
— Provides a picture within which database design and application

development are mapped out and evaluated

« Traditional SDLC is divided into several phases

Planning: yields a general overview of the company and its objectives

Analysis: problems defined during planning phase are examined in
greater detail

Detailed systems design: designer completes the design of the system’s
Processes

Implementation: hardware, DBMS software, and application programs
are installed, and the database design is implemented

Maintenance: corrective, adaptive, and perfective

SDLC (con’t)

Planning

Implementation I

Action(s)

Initial assessment
Feasibility study

User requirements
Existing system evaluation
Logical system design

Detailed system specification

Coding, testing, and debugging
Installation, fine-tuning

Evaluation
Maintenance

Enhancement

SDLC Pros & Cons

» Major advantages
— Control
— Accountability
— Error detection

» Major drawbacks
— Relatively inflexible

— Becomes unstable if the initial
much

SDLC Pros & Cons (con’t)

» Big IT projects are getting harder to complete
successfully as evidenced by project success
rates:.

— Projects between $3 and $10 million have success rates
from 23% to 11%

— Projects under $3 million have success rates from 33% to
46%

The Database Life Cycle

» The Database Life Cycle (DBLC) contains six phases

Database initial study: define problems, constraints, objectives, scope,
and boundaries

Database design: making sure that the final product meets user and
system requirements

Implementation and loading: DBMS is installed, database is created, and

data is loaded or converted

Testing and evaluation: database is tested, fine-tuned, and evaluated
 Full backup/dump: all database objects are backed up in their entirety

« Differential backup: only modified/updated objects since last full backup are
backed up

» Transaction log backup: only the transaction log operations that are not
reflected in a previous backup are backed up

Operation: problems are identified and solutions implemented
Maintenance and evolution: preventative, corrective, adaptive, etc.

The Database Life Cycle (con’t)

Action(s)

Analyze the company situation
Define problems and constraints
Define objectives

Define scope and boundaries

study

4

Database design]

\

Implementation
and loading

Database initial]

Create the conceptual design
DBMS software selection
Create the logical design
Create the physical design

Install the DBMS
Create the database(s)
Load or convert the data

Test the database
Fine-tune the database
Evaluate the database and its application programs

COe 0686 (L0 CLLL

¢

Produce the required information flow

Introduce changes
Make enhancements

The Database Life Cycle (con’t)

Section

Stage

Steps Activities
* Data analysis and rcquimnenls * Determine end-user views, outputs, and transaction requirements

° Entily Rch(imhip mode"ng and normalization * Define entities, attributes, domains, and relationships
* Draw ER diagrams; normalize entity attributes

+ Data model verification * ldentify ER modules and validate inserl, update, and delete rules
* Validate reports, queries, views, integrity, access, and security

*» Distributed database dt‘Sign' * Define the fragmentation and allocation strategy

= + Determine DBMS and data model to use

. Map conceplual model to logical model components * Define tables, columns, relationships, and constraints

* Validate logical model using normalization * Normalized set of tables

« Validate logical model inlesrity constraints * Ensure entity and referential integrity; define column constraints
* Validate '08i(ﬂ| model against user rcquifements * Ensure the model supports user requirements

v

* Define data storage organization « Define tables, indexes, and views’ physical organization
* Define inl(‘gl‘"y and SQCUI’“Y measures * Define users, security groups, roles, and access controls

* Determine perfotmaﬂ(e measures’ * Define database and query execulion paramelers

Software

Programming
exemptions

Transactions

External factors

Software-induced failures may be traceable to the
operating system, the DBMS software, application
programs, or viruses and other malware.

Hardware-induced failures may include memory
chip errors, disk crashes, bad disk sectors, and disk-
full errors.

Application programs or end users may roll back
transactions when certain conditions are defined.
Programming exemptions can also be caused by

malicious or improperly tested code

that can be exploited by hackers.

The system detects deadlocks and aborts one of
the transactions. (See Chapter 10.)

Backups are especially important when a
system suffers complete destruction from fire,
earthquake, flood, or other natural disaster.

Sources of Database Failluers

In April 2017, a new vulnerability was found in the
Oracle E -Business Suite, that allows an
unauthenticated attacker to create, modify, or delete
critical data.

A bad memory module or a multiple hard disk failure
in a database system can bring it to an abrupt stop.

In February 2016 a group of unidentified

hackers fraudulently instructed the New York Federal
Reserve Bank to transfer $81 million from the central
bank of Bangladesh to accounts in the Philippines.
The hackers used fraudulent messages mnjected by
malware disguised as a PDF reader.

Deadlock occurs when executing multiple
simultaneous transactions.

In August 2015, lightning struck a local utility
provider’s grid near Google’s data centers in
Belgium. Although power backup kicked in
automatically, the interruption was long enough to
cause permanent data loss in affected systems.

DBLC & SDLC

System
design

3

System
implementation

Database maintenance
and evolution

Conceplual
Logical
Physical

ﬂ

Creation
Loading
Fine-tuning

<l

Screens
Reporls
Procedures

Protolyping

Debugging

Application program
maintenance

Conceptual Design

« Goal: design a database independent of database
software and physical details

— Conceptual data model: describes main data entities,
attributes, relationships, and constrains

 Designed as software and hardware independent
e Minimum data rule

— All that 1s needed is there, and all that is there iIs
needed

Conceptual Design Steps

Data analysis and requirements
Entity relationship modeling and normalization

Data model verification

Distributed database design

Conceptual Design Steps (con’t)

 Data analysis and requirements

— Designers efforts are focused
« Information needs, users, sources and constitution

— Answers obtained from a variety of sources
« Developing and gathering end-user data views
« Directly observing current system: existing and desired output
* Interfacing with the systems design group

 Entity relationship modeling and normalization

— All objects (entities, attributes, relations, views, and so on)
are defined in a data dictionary, which is used in tandem
with the normalization process

Developing the Conceptual
Model via ER

Identify, analyze, and refine the business rules

Identify the main entities, using the results of Step 1

Define the relationships among the entities, using the results of Steps 1 and 2

Define the attributes, primary keys, and foreign keys for each of the entities

Normalize the entities (remember that entities are implemented as tables in an RDBMS)

Complete the initial ER diagram

Validate the ER model against the end users’ information and processing requirements

Modify the ER model, using the results of Step 7

lterative ER Model Process

Conceptual Design Tools and Info

Information sources Design tools Conceptual model

Business rules and
data constraints

ER diagram

Normalization

Process functional
descriptions (FD)* Data dictionary
(user views) Definition
‘ and
validation

* Oulput generated by the systems analysis and design activities

Conceptual Design Steps (con’t)

 Data model verification
— Verified against proposed system processes
— Run through a series of tests

 Important concepts

— Module: information system component that handles specific
business function

— Cohesivity: strength of the relationships among the module’s
entities

— Module coupling: extent to which modules are independent
to one another
« Low coupling decreases unnecessary intermodule dependencies

ER Verification

[dentify the ER model’s central entity
[dentify each module and its components

[dentify each module’s transaction requirements:

» Internal; updates/inserts/deletes/queries/reports

» External: module interfaces

Verify all processes against the module’s processing and reporting
requirements

Make all necessary changes suggested in Step 4

Repeat Steps 2-5 for all modules

Does ER
require changes?

DBMS Software Selection

» Factors that affect the purchasing
— Cost

— Size of the database (# of entities and # of each
entity instances)

— DBMS features and tools

— IS staff skill level

— Underlying model

— Portability

— DBMS hardware requirements

Logical Design

» Goal: design an enterprise-wide database that is
based on a specific data model but independent
of physical-level details

— Requires that all objects in the conceptual model be
mapped to the specific constructs used by the
selected database model

 Validates logical model
— Using normalization
— Integrity constraints
— Against user requirements

Logical Design Steps

Map the conceptual model to logical model components
Validate the logical model using normalization

Validate the logical model ntegrity constramnts

Validate the logical model agamst user requirements

Mapping Conceptual Model to
Relational Model

Map strong entities

Map supertype/subtype relationships

Map weak entities

Map binary relationships

Map higher-degree relationships

Physical Design

 Process of data storage organization and data
access characteristics of the database; ensures
Integrity, security, and performance
— Define data storage organization
« Allocate physical disk units to tables and indices
— Define integrity and security measures

— Determine performance measures

Database Design Strategies

« Top-down design starts by identifying the data sets and then
defines the data elements for each of those sets

— Involves the identification of different entity types and the definition of
each entity’s attributes

« Bottom-up design first identifies the data elements (items) and
then groups them together in data sets

— First defines attributes, and then groups them to form entities

—

/ Attribute | Attribute ‘ Attribute | Attribute I

Centralized versus Decentralized
Design

« Centralized design: process by which all database design
decisions are carried out centrally by a small group of
people

— Suitable in a top-down design approach when the problem domain
Is relatively small, as in a single unit or department in an
organization

» Decentralized design: process in which conceptual design
models subsets of an organization’s database requirements,
which are then aggregated into a complete design

— Such modular designs are typical of complex systems with a
relatively large number of objects and procedures

Centralized Design

Conceptual model

Conceptual model verification

User views | System processes | Data constraints | '

Ma— ———

Decentralized Design

s e e J Submodule criteria

Conceptual
models

v v v

Views Views Views
Verification Processes Processes Processes
Consltraints Constraints Constraints

\ 4

Aggregation

Aqggregation Problem

Homonyms: Two different entities are addressed by the same label.
(Department B uses the label X to describe both entity X and entity Y.)

Label used:
X
X

Conflicting object definitions: Attributes for the entity PROFESSOR

Payroll Dept. Systems Dept
Conflicting Primary key: PROF_SSN PROF NUM
definitions Phone altnibute: 898.2 2853

Agile Methods

— Are the newest development

— Emphasize continuous feedback
development

— Based upon the “Agile Manifesto™

— lterative (Spiral) model

— Examples are Scrum and Extreme Programming
(XP)

Copyright Dan Brandon, PhP, PMP 31

Aqgile vs Waterfall (SDLC)

WATERFALL

Challenged

Challenged 59% Successful

45% 26Y%

Successful
43%

Copyright Dan Brandon, PhP, PMP 32

References

 Designing Data-Intensive Applications: The
Big Ideas Behind Reliable, Scalable, and
Maintainable Systems by Martin
Kleppmann

« Systems Analysis and Design (Shelly
Cashman Series) by Scott Tilley and Harry
J. Rosenblat

» Systems Analysis and Design (MindTap
Course List) by Scott Tilley

Homework

* Textbook Chapter 9
» Review questions 1 thru 9

