Advanced SQL

Case Study Tables
|salesperson, product, sales]

* S (SID, SName, City)
« P (PID, PName, Size, Price)
« SP (SID, PID, Qty)

Copyright Dan Brandon

S1
S2
S4
SE

Salesperson Table (S)

SID

Shame
Peterson

Olsen
Hansen

Jensen

Copyright Dan Brandon

City
Aarhus
Copenhagen

Odense

Copenhagen

0]
03
04
5
g

Product Table (P)

PID PName Size
Shirt

6
Trousers 5
Socks {
Blouse 6
Blouse 8

Copyright Dan Brandon

Price
50

90
20
50
60

S2
S2
S4
S4
SO
S5
S5
SO
S5

SP Table (Intersection Table)

SID

P1
P3
P5
P8
P1
03
D4
o5
08

PID

Copyright Dan Brandon

200
100
200
100
50

500
800
500
100

Qty

Access Relationship Grid

Relationships

Download this Access file (SP) form the online syllabus.

Copyright Dan Brandon

Function Extensions

* Various extended functions are available in RDBMS’s,
but the names and syntax varies by product:
— Date and conversions from/to other types
— Date/time and conversions from/to other types
— Numeric functions such as abs, round, floor, ceiling

— String functions such as concatenation, case changes,
substring, length, and conversiosn to/from numeric

— Sequences
— Switch

— Case

— Window

Copyright Dan Brandon

Sequences

 Sequences are an independent object in the

database

— Have a name and can be used anywhere a value expected
— Not tied to a table or column

— Generate a numeric value that can be assigned to any column
In any table

— Table attribute with an assigned value can be edited and
modified

— Supported in many RDBMS’s, but not in Access

— Can be used for auto-increment (identity) column for
databases without that built-in capability

Sequences (con’t)

« CREATE SEQUENCE seg-name [START WITN n]
[INCREMENT BY n] [CACHE | NOCACHE]

— NOCACHE is 2 words in MS SQL Server
— INSERT INTO table VALUES (seg-name.NEXTVAL, ...)

® | SQL Plus

SQL> CREATE SEQUENCE CUS_CODE_SEQ START WITH 20010 NOCACHE;
Sequence created.

SQL> CREATE SEQUENCE INV_NUMBER_SEQ START WITH 4010 NOCACHE;
Sequence created.

SQL> SELECT * FROM USER_SEQUENCES;

SEQUENCE_NAME

CUS_CODE_SEQ 1 1.0000€+28
INV_NUMBER_SEQ 1 1.0000€+28

SQL>

Switch

« SELECT SP.SID,
Switch([SID]="S1","Peterson",[SID]="S2",
"Olsen",[SID]="S4","Hansen",[SID]="S5","
Jensen") AS [S-Name], SP.PID, SP. Qty

 FROM SP;

Copyright Dan Brandon

CASE...WHEN

SELECT SID, PID, Qty,

CASE WHEN Qty>10 THEN ‘Yes’ ELSE
NULL END AS ‘Quota Met’

FROM SP

CASE Is not In Microsoft Access SQL

Copyright Dan Brandon

SQL Window Function

The performs a calculation
across a set of table rows that are somehow related to
the current row

This i1s comparable to the type of calculation that can
be done with an aggregate function such as SUM

But unlike regular aggregate functions, use of a
window function does not cause rows to become
grouped into a single output row — the rows retain
their separate identities

Behind the scenes, the window function is able to
access more than just the current row of the query
result

Window Syntax

<window function> OVER

(IPARTITION BY <expression list>]
[ORDER BY <expression [ASC|DESC] list>]
[ROWS|RANGE <window frame>])

Some Sample Data in a Table

Beverly Lang

Kameko French
Ursa George
Ferris Brown
Noel Meyer
Abel Kim
Raphael Hull
Jack Salazar
May Stout

Haviva Montoya

Traditional Aggregate Function
A\Yie)

select avg(sales) as avgsales from gl _sales;

1 row selected (8.131 seconds)

Simple Window Query for
Running Average

vgsales from gl sales;

———————— e S
Beverly Lang
Kameko French
Ursa George
Ferris Brown

HNoel Meyer

Raphael Hull

Jack Ssalazar

May Stout

I

I

I

I

I

Abel Kim) 12369 163 |
: I

I

I

I

Haviva Montoya

Partition By Dealer ID

select emp name, dealer id, sales, avg(sales) over (partition by dealer id) as avgsales from gl sales;
e e T e e e e et =
emp_name | dealer id | sales | avgsales |
e e e e T e e e =
19745 | 14357
19745 | 14357
8227 | 14357
9718 | 14357
16233 | 1392%

Ferris Brown |
|
|
|
|

16233 | 13925 |
|
|
|
|

| Noel Meyer
Raphael Hull
Jack Salazar
Beverly Lang
Kameko French
9388 | 13925
15427 | 12368
12369 | 12362
Q3es | 12368

Haviva Montoya
| Ursa George
| Abel Kim
| May Stout

T T O T O i A

Fommmmmmm oo et e e atat =
)

18 rows selected (8.215 seconds

SP Window Example

« SELECT SID, PID, Qty,

« SUM(Qty) OVER (ORDER BY SID) AS
Running_total

« FROM SP

Results...

SID PID Running_total

SP Window Example...

. SELECT SID, PID, Qty,
. SUM(Qty) OVER (PAR

ION BY SID

ORDER BY SID) AS Running_total

* FROM SP

Results...

SID PID Running_total

Window Notes

Some database products have can work with a portion of the
table/query using ROWS BETWEEN

Some database products have an optional frame_clause
— { RANGE | ROWS } frame_start

— { RANGE | ROWS } BETWEEN frame_start
AND frame_end

Cannot use window functions and standard aggregations
(GROUP BY) together

Common window aggregations are SUM, COUNT, AVG,
MIN, MAX

There is also a ROW_NUMBER() function

Adding Row Number

» select dealer_id, sales, emp _name,
row_number() over (partition by dealer id
order by sales) as row ,avg(sales) over
(partition by dealer id) as avgsales from
gl sales;

Notes (con’t)

There Is also a RANK() function, which is like
ROW_NUMBER ecept that duplicates are given
the same rank (also DENSE_Rank())

There is also NTILE() for percentile rankings

LEAD and LAG can be used to compare adjacent
ROWS

If writing several window functions in the same
query, may need to alias a window

Updating with SQL

* INSERT
« DELETE

*UPDATE [oue
LUFDATE

Copyright Dan Brandon

INSERT

* To add a new salesperson Smith (number
S6) who Is In Memphis:
 INSERT INTO S
— VALUES (‘S6°, ‘Smith’, ‘Memphis’)
* |f not all columns have values, need to list
the columns and order:
— INSERT INTO S
* (SID, SName)
« VALUES (‘S6°, ‘Smith’)

Copyright Dan Brandon

INSERT using query

- CREATE TABLE TEMP

 INSERT INTO TEMP

— VALUES
« SELECT SID
« FROM S
« WHERE City = ‘Copenhagen’

Copyright Dan Brandon

Access Action Queries

 For lab and project, you do not have to do
‘action queries’ 1n Access

» |If you do, be careful because the queries
will change your tables; best to backup your
tables before trying them

 Access syntax Is somewhat different from
standard SQL (refer to an Access book such
as the textbook from MIS 153 class)

Copyright Dan Brandon

Access Syntax for ‘Action Query’

INSERT INTO TEMP
SELECT SID AS SID

FROM S

WHERE City=‘Copenhagen’;

Copyright Dan Brandon

DELETE

 Single row (use primary key or unigue
Index):
— DELETE
« FROM S
 Where SID = ‘S5’

» Multiple rows:
— DELETE

« FROM S
* Where City = ‘Copenhagen’

Copyright Dan Brandon

UPDATE

* Increase the price of one product (P1):
— UPDATE P
 SET Price =Price +5
« WHERE PID = ‘P1’
» Change the spelling of Copenhagen to
Koebenhavn (multiple rows):
— UPDATE S
 SET City = ‘Koebenhavn’
« WHERE City = ‘Copenhagen’

Copyright Dan Brandon

Class Exercise

* Write the SQL to Increase
the prices by 10% of all
products that were sold

=i
Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

« UPDATE P
—SET Price =Price * 1.1
—~WHERE EXISTS
* (SELECT *
—~FROM SP
~WHERE SP.PID = P.PID)

Stored Procedures

SQL queries and updates can be “canned” and
stored on the server (in a client/server
environment)

Intermediate results can be kept and processed on
the server in the same or another stored procedure
- reducing network traffic

Application independence achieved by
maintaining common functions one place on the
server instead of in each application

However even though stored procedures use SQL, they
also use vendor proprietary scripting languages

Copyright Dan Brandon

SQL Data Definition

CREATE TABLE

NOT NULL
UNIQUE
PRIMARY KEY
FOREIGN KEY
DEFAULT
CHECK

CREATE INDEX

CREATE VIEW
ALTER TABLE
CREATE TABLE
AS

DROP TABLE

DROP INDEX

DROP VIEW

Creates a new table in the user’s database schema

Enszures that a column will not have null values

Ensures that a column will not have duplicate values

Defines a primary key for a table

Defines a foreign key for a table

Defines a default value for a column (when no value is given)
WValidates data 1n an attnbute

Creates an index for a table

Creates a dyvnamic subset of rows and columns from one or more tables
Modifies a table’s definition (adds, modifies, or deletes attributes or
constraints)

Creates a new table based on a query in the user’s database schema
Permanently deletes a table (and its data)

Permanently deletes an index

Permanently deletes a view

SQL Data Definition (con’t)

« CREATE TABLE - Create Table
— CREATE TABLE
— CREATE TABLE AS

« DROP TABLE - Delete table and all data
— DROP TABLE SP

« ALTER TABLE

— ALTER TABLE S ADD COLUMN STATE
CHAR(2) DEFAULT ‘TN’

CREATE TABLE LIKE

CREATE TABLE XXX LIKE YYY creates an empty
table with the same structure as the original table

CREATE TABLE XXX AS SELECT Inserts the data into
the new table

— The resulting table is not empty; only the data is copied not keys
and indices

To create a SQL table from another table without copying
any values or keys from the old table:
— CREATE TABLE XXX

AS (SELECT * FROM old_table WHERE 1=2);

Copyright Dan Brandon

Relational Model Example

S (SID, SName, City)
« P (PID, PName, Size, Price)
« SP (SID, PID, Qty)

—or SP(SPID, SID, PID, Qty)

« With not null unique index on
(SID,PID) and/or (PID,SID)

S (SID, SName, City)

« CREATE TABLE S

— (SID CHAR(2) NOT NULL,

— SName VARC
— City A\VZA\{®
— PRIMARY KEY (SI

HAR (30),
HAR (15),

D))

P (PID, PName, Size, Price)

- CREATE TABLEP

_ (PID CHAR(2) NOT NULL,

~ PName VARCHAR (20),

_ Size SMALLINT,

~ Price DECIMAL (5.2) NOT NULL,

— PRIMARY KEY (PID))

SP (SID, PID, Qty)

- CREATE TABLE SP

— (SID CHAR(2) NOT NULL,
_PID CHAR(2) NOT NULL,
~ Qty INTEGER,

PRIMARY KEY (SID, PID),
FOREIGN KEY (SID) REFERENCES S,

~FOREIGN KEY (PID) REFERENCES P)

Table Modifications

Methods:

— Alter (simple modifications)
— Drop and recreate

Considerations:

— EXxisting data

— Default vales of new data
— EXxisting references in programs or queries
Need for detailed plan !

Impact minimized by using views for application

program and query reference

Typical Table Mod Procedure

Define new temporary table with changes, new
name, and defaults

Copy data from old table (INSERT INTO X
SELECT ..)

Drop old table (loses views and security also)
Create new table with indexes, security, etc.
Copy data from temporary table
Drop temporary table

Restore views

DOMAINS

- CREATE DOMAIN CITIES CHAR(15)
DEFAULT ‘Memphis’;

- CREATE TABLE S

— (SID INTEGER NOT NULL,
— SName VARCHAR (30),

_ PRIMARY KEY (SID))

» Not support by all RDBMS, can keep
domains in CASE product

Constraints

e Column
e Table

e Domain
e General

Column Constraints

NOT NULL
UNIQUE
— SSNum CHAR(9) NOT NULL UNIQUE

DEFAULT
— State CHAR(2) DEFAULT ‘TN’

ENUMERATED
— State CHAR(2) CHECK (State IN (‘TN’, ‘AR’, ‘MS”))

COMPLEX
_ State CHAR(2) CHECK (State IN SELECT *
_ FROM STATES)

Table Constraints

[multiple columns within the same table]

« Uniqueness (multiple columns)
— CREATE TABLE PROJECT

« (ProjNo INTEGER NOT NULL,
 PID INTEGER NOT NULL,
« EID INTEGER NOT NULL,

- PRIMARY KEY (ProjNo)
- UNIQUE (PID, EID))

* Primary Keys are automatically unique
« Complex (multiple columns)
— Blouses cannot cost more than $60
— CONSTRAINT IC01 CHECK
e (P.Name NOT = ‘Blouse’ or P.Price NOT > 60)

Domain Constraints

« CREATE DOMAIN CITIES CHAR (15)
— CHECK (VALUE IS NOT NULL);

« CREATE DOMAIN CITIES CHAR (15)
— CONSTRAINT MIDSOUTH

— CHECK (VALUE IN (‘Memphis’, ‘Nashville’,
‘Little Rock’, ‘Jackson’))

|

' |

| o

?-?" ® oans -l i

T B T
v w ;‘,__". / @& -

e g o it G

: '
T RE T RIS

General Constraints - ASSERTIONS

« Any arbitrary combination of tables and
columns involved !

« CREATE ASSERTION IC99 CHECK

_ (NOT EXISTS (SELECT * FROM P, SP
WHERE P.PID = SP.PID AND (P.Price
* SP.Qty) > 100000))

No salesperson can sell more than 100000
dollars of a product

Constraint Deferral

 Constraints may be initially activated
(IMMEDIATE) or deferred

o Later that status may be changed

 Constraints can also be qualified as not
deferrable

 Sometimes need for:

— roots of tree (or lattices)

— Initial data loading for required minimum
cardinality

Access Constraints

Field MName | Daka Tvpe |

Texk Salesperson ID

Shame Texk Salesperson MName

ik Texk Cikw

Field Froperkties

izeneral] Lookup]

Field Size =

Formak

Inpuk MMask

apkion

Default Yalue

Yalidation Rul= Like ("5*")
Yalidation Text SID musk skark wikh 5
FRequired [}

Allow Fero Length Mo

Indexed Yes (Mo Duplicates)

& Field nams

ValidationRule ValidationText

<>0 Entry must be a nonzero value

> 1000 Or Is Null Entry must be blank or greater than
1000

Like "A????" Entry must be 5 characters and begin

with the letter "A"
>=#1/1/96# And <#1/1/97# Entry must be a date in 1996

If you create a validation rule for a field,
Microsoft Access doesn't normally allow a Null
value to be stored in the field

If you want to allow a Null value, add "Is Null" to
the validation rule, as in "<> 8 Or Is Null" and
make sure the Required property is set to No

Referential Integrity Constraints

* One may define conditions for deletion
and updating of parent entities:

— Restrict
— Cascade
— Set Null
— Set Default (matching PK must exists)

- CREATE TABLE SP

— (SID CHAR(2),
_PID CHAR(2) NOT NULL,
~ Qty INTEGER,

— PRIMARY KEY (SID, PID),

— FOREIGN KEY (SID) REFERENCES S ON
DELETE SET NULL,

— {if a salesperson is deleted, his orders have a null salesperson assigned to them}

— FOREIGN KEY (PID) REFERENCES P ON
DELETE CASCADE)

— {if a product is deleted, all orders for that product are also deleted}

Access Relationship Grid

[E] =10]

[Tables ‘ B GQueries l EE Farms l I8 Reports 7 Macros l «&% Modules l

P
=

Referential Integrity in Access

Relationzhips

Table/Query: Related Table/Query: Ok
S |sP [«

sSID Zancel

Jain Twpe...

[Cascade Update Related Fields
| Cascade Celete Related Records

Relationship Twpe: Cne-To-Many

Access Cascading Updates and Deletes

For relationships in which referential integrity (referential integrity: Rules that you follow to preserve the
defined relationships between tables when you enter or delete records.) is enforced, you can specify whether
you want Microsoft Access to automatically cascade update (cascading update: For relationships that enforce
referential integrity between tables, the updating of all related records in the related table or tables when a
record in the primary table is changed.) and cascade delete (cascading delete: For relationships that enforce
referential integrity between tables, the deletion of all related records in the related table or tables when a record
in the primary table is deleted.) related records. If you set these options, delete and update operations that would
normally be prevented by referential integrity rules are allowed. When you delete records or change primary
key (primary key: One or more fields (columns) whose values uniquely identify each record in a table. A
primary key cannot allow Null values and must always have a unique index. A prlmary key IS used to relate a
table to foreign keys in other tables.) values in a primary table (primary table: The "one" side of two related
tables in a one-to-many relationship. A primary table should have a primary key and each record should be
unique.), Microsoft Access makes necessary changes to related tables to preserve referential integrity.

If you select the Cascade Update Related Fields check box when defining a relationship, any time you change
the primary key of a record in the primary table, Microsoft Access automatically updates the primary key to the
new value in all related records. For example, if you change a customer's ID in the Customers table, the
CustomerlD field in the Orders table is automatically updated for every one of that customer's orders so that the
relationship isn't broken. Microsoft Access cascades updates without displaying any message.

Note If the primary key in the primary table is an AutoNumber (AutoNumber data type: In a Microsoft Access database, a field
data type that automatically stores a unique number for each record as it's added to a table. Three kinds of numbers can be
generated: sequential, random, and Replication ID.) field, setting the Cascade Update Related Fields check box will have no
effect, because you can't change the value in an AutoNumber field.

If you select the Cascade Delete Related Records check box when defining a relationship, any time you delete records in the
primary table, Microsoft Access automatically deletes related records in the related table. For example, if you delete a customer
record from the Customers table, all the customer's orders are automatically deleted from the Orders table (this includes records in
the Order Details table related to the Orders records). When you delete records from a form or datasheet with the Cascade Delete
Related Records check box selected, Microsoft Access warns you that related records may also be deleted. However, when you
delete records using a delete query (delete query: A query (SQL statement) that removes rows matching the criteria that you
specify from one or more tables.), Microsoft Access automatically deletes the records in related tables without displaying a
warning.

Constraint Application

|t may be better to place your constraints in the
database rather than in the application program:

— easler maintenance (one place instead of In every
program)

— enforced for direct SQL usage as well as via
application programs

— more efficient

« However not all database systems handle all referential

Integrity options, and in an application program you

can code whatever type of referential integrity you

need and give the user better error messages

Data Structures and Constraints

Tree data structure

— All entries except the top
(root) have a master
record

Forest data structure
— Multiple trees

Queue
— FIFO
Stack
— LIFO

Referential Integrity Checking In
Application Code (Insertion)

if ($master '=""") { /I referential integrity check in PHP/MySql for Web App
If ($level ==0) {
echo '<h2>Error: If a Master WBS Code i1s specified,’;
echo ‘ the level must not be zero !'</h2>';
exit;
¥
$query2 = "select * from $tableName where whsCode="".$master."";";
$result2 = mysql_query($query2);
$num_results2 = mysqgl_num_rows($result2);
if ($num_results2 ==0) {
echo '<h2>Error: Invalid/Non-existent Master WBS Code 1</h2>";
exit;

Class Example

 Given the relations:
— FACULTY (Fname, Status)
— ADVISEE (SID, SName, Major, ...)
— GRAD-ADVISEE (SID, GFname) SubTypes
— UGRAD-ADVISEE (SID, FName)

» Develop SQL constraints for:
— Status iIs 0 (undergrad faculty) or 1 (grad faculty)

— SID for graduate students start with 9, undergrads do
not

— Graduate students only have graduate faculty for
advisors

=i
Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

« CREATE TABLE FACULTY

_ Status CHAR (1) NOT NULL CHECK (Status IN (0,1))

- CREATE TABLE UGRAD-ADVISEE

— SID CHAR (...) NOT NULLCHECK (SID NOT LIKE 9%)

« CREATE TABLE GRAD-ADVISEE
— SID CHAR (...) NOT NULL CHECK (SID LIKE 9%)

— GFName CHAR (...) CHECK (GFName IN (SELECT
FName FROM FACULTY WHERE Status = 1))

Views [Access Queries]

A virtual table derived from one or more other tables
(or other views)

Defined via SQL

View definition Is stored but the user data is only
stored In the underlying tables

Use view names in SQL queries just like table names
(almost)

On some systems, some views are updateable (such
as those created from one table)

View Usage

» Make gqueries easy for end users

 Application Independence -
applications coded to views instead of

actual tables

 Security - certain uses have access to
only parts of table(s)

View Syntax

« CREATE VIEW SALESPERSON AS
— SELECT SName, City
— FROM S
— ORDER BY SName

« CREATE VIEW SALES AS
— SELECT SName, PName, Qty
— FROM S, SP, P
— WHERE S.SID = SP.SID and P.PID = SP.PID
— ORDER BY Pname

Easy Queries for End Users

 FROM SALES
« WHERE Qty > 100

Views with Groups

« CREATE VIEW SALESCOMMISSION (
Salesperson, Commission) AS

— SELECT SName, SUM (Price *Qty *.1)

— FROM S, SP, P

— WHERE S.SID = SP.SID and P.PID = SP.PID
— GROUP BY SID

— ORDER BY SName

View Translation

« CREATE VIEW EXPENSIVE AS A
— SELECT PName, Price

— FROMP 5

— WHERE Price > 50

« UPDATE EXPENSIVE
— SET Price = Price +5
— WHERE PName = ‘Blouse’
« UPDATEP TRANSLATION
— SET Price = Price +5
— WHERE PName = ‘Blouse’
— AND Price > 50

lllegal View Retrievals

. CREATE VIEW PQ (PID, TotQty) AS
~ SELECT PID, SUM (Qty)
— FROM SP
— GROUP BY PID

« SELECT PID
~ FROM PQ
— WHERE TotQty > 500

« SELECT PID Translation - illegal, need HAVING
— FROM SP
— WHERE SUM (Qty) > 500
— GROUP BY PID

Illegal View Usage

A FROM clause that references a grouped
view IS not allowed to have an associated
WHERE clause, GROUP BY clause, or
HAVING clause

« SELECT PID Legal
~ FROM SP
~ GROUP BY PID
~ HAVING SUM (Qty) > 500

Updateable Views

It does not include the word distinct
Every item In the select clause consists of a simple

I

eference to a column of the underlying table (ie it

IS not a constant, nor an operational expression,
nor an expression involving a function)

t

"he FROM clause identifies exactly one table and
nat table Is updateable

"he WHERE clause does not include a subguery
"here i1s no GROUP BY or HAVING Clause

Procedural SQL

 Performs a conditional or looping operation by
Isolating critical code and making all
application programs call the shared code

— Better maintenance and logic control

 Persistent stored module (PSM): block of code

— Contains standard SQL statements and procedural
extensions that Is stored and executed at the DBMS
server

 Use and syntax of procedural SQL varies by
vendor

Procedural SQL (con’t)

» Procedural Language SQL (PL/SQL)

— Use and storage of procedural code and SQL
statements within the database

— Merging of SQL and traditional programming
constructs

» Procedural code is executed as a unit by DBMS when
Invoked by end user for:

— Triggers
— Stored procedures
— PL/SQL functions

Triggers

A trigger causes an SQL statement (or stored procedure) to
be automatically invoked whenever certain events (insert,
update, or delete) happen to a table (or a view)

CREATE TRIGGER TO1
— AFTER UPDATE OF P.OnHand ON P
— WHEN (P.OnHand < P.ReorderPoint)

— BEGIN
« PERFORM Reorder (PID)

— END

Also can specify If action is to be performed just once per
table or for each row, and maybe able to specify “before”,
“after”, or “instead of”

Triggers are typically not pre compiled, but cached

Trigger Uses

Synchronization of denormalized tables

Sums and other computec
Automatically invoking a

values of entire tables
oplication level functions; for

example, reorder a part w
falls below the reorder po

nenever the stock on hand
INt

Enforcing business rules that cannot be directly handled
with constraints; or checking constraints upon certain

database conditions

PENDANTS - clean up; for example deleting the parent
when the last child is deleted

Trigger Cautions

 Users unaware of triggers

—Example: order clerks using dummy
orders to reserve stock

* Trigger/lock conflicts
 Cascading of triggers & infinite loops

Access Triggers (Events)

« The Activate event occurs when a form or report
receives the focus and becomes the active window

» The Deactivate event occurs when a form or report
loses the focus to a Table, Query, Form, Report,
Macro, or Module window, or to the Database
window

« Note: The Deactivate event doesn't occur when a
form or report loses the focus to a dialog box, to a
form for which the PopUp property is set to Yes,
or to a window In another application

To run a macro or event procedure when these
events occur, set the OnActivate, or OnDeactivate
property to the name of the macro or to [Event
Procedure]

You can make a form or report active by opening
It, clicking it or a control on it, or by using the
SetFocus method in Visual Basic (for forms only)

The Activate event can occur only when a form or
report is visible

The Activate event occurs before the GotFocus
event: the Deactivate event occurs after the
LostFocus event

Can also have macros triggered from GotFocus,
LostFocus, and other events

Stored Procedures

Named collection of procedural and SQL statements
— Stored in the database
— Can be used to encapsulate and represent business transactions

Advantages

— Reduce network traffic and increase performance
— Decrease code duplication by means of code isolation and code sharing

They are typically written in the proprietary language of the
database (but some new versions of products may also allow them
to be written in Java)

They allow functional logic to be maintained within the database
Instead of the application

Table changes require recompilation of associated stored
procedures

Embedding SQL in Program Code

* SQL works in “sets”, but programs (Java,
C++, PHP, etc.) use data in variables,
arrays, vectors (or other data structures), or

files

 To convert from sets to program variables:

— Older systems use the concept of “result files™
and “cursors”

— Newer systems represent results sets as arrays
of arrays (2 dimensional arrays or tables) or
vectors of vectors

SQL in Program Code (Java)

public void execSQLCommand(String command) // the string argument is an SQL statement

{

try {
theStatement = theConnection.createStatement();

theResult = theStatement.executeQuery(command); // vector of rows
theMetaData = theResult.getMetaData();
int columnCount = theMetaData.getColumnCount();
theDisplay.setText(*"");
while (theResult.next()) // move to next row

{
for (inti =1; i <= columnCount; i++)
{
String colValue = theResult.getString(i); // get column i, for current row
if (colValue == null) colValue =",
theDisplay.append(colValue + ";");
¥
theDisplay.append("\n");
¥

} catch (Exception e)
{ handleException(e); }

SQL in Program Code (PHP)

$query = "select * from s";

$result = mysql_query($query); // $result is an array of arrays (rows)

$num_results = mysgl_num_rows($result);

echo '<P><H2>Number of records found: ".$num_results.'</H2></P>";

echo '<TABLE BORDER>

for ($i=0; $i<Snum_results; $i++)

{
$row = mysql_fetch_array($result); // $row is an array of columns
echo '<TR>";
echo '<TD>".htmlspecialchars(stripslashes($row]['sid"])).'</TD>";
echo '<TD>'.htmlspecialchars(stripslashes($row['sname'])).'</TD>";
echo '<TD>".htmlspecialchars(stripslashes($row][city'])).'</TD>";
echo '</TR>';

}
echo '</TABLE>"

References

SQL for SMARTIES; Celko, J.; 1-55860-323-9

SQL Queries: 200+ Queries to Challenge you
by Swaroop Kallakuri

Sqgl Guide (Quick Study: SQL) by Inc. BarCharts

SQL Practice Problems: 57 beginning, intermediate,
and advanced challenges for you to solve using a
“learn-by-doing” approach by Sylvia Moestl Vasilik

SQL in 10 Minutes a Day, Sams Teach Yourself
by

Copyright Dan Brandon

https://www.amazon.com/Ben-Forta/e/B001H6INFU?ref=sr_ntt_srch_lnk_15&qid=1590170570&sr=1-15

Homework

» Textbook Chapter 8
* More SOC queries (16 thru 24)

« Access model for SOC queries of last
lesson

— SOC.mdb - download from course web site-
see next slide

* Do “save as” first
« SQL Test coming soon

Copyright Dan Brandon

SOC E-R Diagram

Copyright Dan Brandon

SOC Access Model

¥ MName ¥ Mumber ¥ Name

City - CustMame Quota

IndustryType Salespersonia Salary

Amount

Copyright Dan Brandon

S (Salesperson Table)

Haker

Jones
K.obad
durphy

Fenith

Copyright Dan Brandon

C (Customer Table)

fiame Lty | ndustryType
Ahemathi Constructioniillhg i
Amalgamated nousing - Memphis
Manchester Lumber — Manchester F

TGty Bulders Memptis &

O (Order Table)
ustiame

L Abemathy Construction alal
200 Abernathy Canstruction Jones 1500
A0 Manchester Lumber — Abe 44

400 Amalgamated Houging Abe pallll
A0 Abernathy Construction Murphy BO00
B00 Tr-City Builders Abgl 70
{00 Manchester Lumber — Jones 1400

Copyright Dan Brandon

SQL Homework Queries

16. Show the names and quota percentages of salespeople who have an order with
ABERNATHY CONSTRUCTION, in descending order of quota percentage (use a
subquery).

17. Show the names and quota percentages of salespeople who have an order with
ABERNATHY CONSTRUCTION, in descending order of quota percentage (use a
join).

18. Show the quota percentages of salespeople who have an order with a customer
in MEMPHIS (use a subquery).

19. Show the quota percentages of salespeople who have an order with a customer
in MEMPHIS (use a join).

20. Show the industry type and names of the salespeople of all orders for
companies in MEMPHIS.

21. Show the names of salespeople along with the names of the customers which
have ordered from them. Include salespeople who have had no orders. Use
Microsoft Access notation.

22. Show the names of salespeople who have two or more orders.

23. Show the names and quota percentages of salespeople who have two or more
orders.

24. Show the names and quota of salespeople who have an order with all
customers.

Copyright Dan Brandon

