
Advanced SQL

Copyright Dan Brandon

Case Study Tables

[salesperson, product, sales]

• S (SID, SName, City)

• P (PID, PName, Size, Price)

• SP (SID, PID, Qty)

Keys ?

Copyright Dan Brandon

Salesperson Table (S)

SID Sname City
S1 Peterson Aarhus

S2 Olsen Copenhagen

S4 Hansen Odense

S5 Jensen Copenhagen

Copyright Dan Brandon

Product Table (P)

PID PName Size Price
P1 Shirt 6 50

P3 Trousers 5 90

P4 Socks 7 20

P5 Blouse 6 50

P8 Blouse 8 60

Copyright Dan Brandon

SP Table (Intersection Table)

SID PID Qty
S2 P1 200

S2 P3 100

S4 P5 200

S4 P8 100

S5 P1 50

S5 P3 500

S5 P4 800

S5 P5 500

S5 P8 100

Access Relationship Grid

Copyright Dan Brandon

Download this Access file (SP) form the online syllabus.

Function Extensions

• Various extended functions are available in RDBMS’s,

but the names and syntax varies by product:

– Date and conversions from/to other types

– Date/time and conversions from/to other types

– Numeric functions such as abs, round, floor, ceiling

– String functions such as concatenation, case changes,

substring, length, and conversiosn to/from numeric

– Sequences

– Switch

– Case

– Window

Copyright Dan Brandon

Sequences

• Sequences are an independent object in the

database
– Have a name and can be used anywhere a value expected

– Not tied to a table or column

– Generate a numeric value that can be assigned to any column

in any table

– Table attribute with an assigned value can be edited and

modified

– Supported in many RDBMS’s, but not in Access

– Can be used for auto-increment (identity) column for

databases without that built-in capability

Sequences (con’t)

• CREATE SEQUENCE seq-name [START WITN n]

[INCREMENT BY n] [CACHE | NOCACHE]

– NOCACHE is 2 words in MS SQL Server

– INSERT INTO table VALUES (seq-name.NEXTVAL, …)

Switch

• SELECT SP.SID,

Switch([SID]="S1","Peterson",[SID]="S2",

"Olsen",[SID]="S4","Hansen",[SID]="S5","

Jensen") AS [S-Name], SP.PID, SP.Qty

• FROM SP;

Copyright Dan Brandon

CASE…WHEN

• SELECT SID, PID, Qty,

• CASE WHEN Qty>10 THEN ‘Yes’ ELSE

NULL END AS ‘Quota Met’

• FROM SP

• CASE is not in Microsoft Access SQL

Copyright Dan Brandon

SQL Window Function

• The SQL window function performs a calculation

across a set of table rows that are somehow related to

the current row

• This is comparable to the type of calculation that can

be done with an aggregate function such as SUM

• But unlike regular aggregate functions, use of a

window function does not cause rows to become

grouped into a single output row — the rows retain

their separate identities

• Behind the scenes, the window function is able to

access more than just the current row of the query

result

Window Syntax

• <window function> OVER

• ([PARTITION BY <expression list>]

• [ORDER BY <expression [ASC|DESC] list>]

• [ROWS|RANGE <window frame>])

Some Sample Data in a Table

Traditional Aggregate Function

(AVG)

Simple Window Query for

Running Average

Partition By Dealer ID

SP Window Example

• SELECT SID, PID, Qty,

• SUM(Qty) OVER (ORDER BY SID) AS

Running_total

• FROM SP

“OVER” places a

moving

“window over the results

SQL Window functions

not in Access

Results…

SID PID Running_total

S2 P1 200

S2 P3 300

S4 P5 500

S4 P8 600

S5 P1 650

S5 P3 1150

S5 P4 1950

S5 P5 2450

S5 P8 2550

SP Window Example…

• SELECT SID, PID, Qty,

• SUM(Qty) OVER (PARTITION BY SID

ORDER BY SID) AS Running_total

• FROM SP

Partition places the moving

window just over SID’s

Results…

SID PID Running_total

S2 P1 200

S2 P3 300

S4 P5 200

S4 P8 300

S5 P1 50

S5 P3 550

S5 P4 1350

S5 P5 1850

S5 P8 1950

Window Notes

• Some database products have can work with a portion of the

table/query using ROWS_BETWEEN

• Some database products have an optional frame_clause

– { RANGE | ROWS } frame_start

– { RANGE | ROWS } BETWEEN frame_start

AND frame_end

• Cannot use window functions and standard aggregations

(GROUP BY) together

• Common window aggregations are SUM, COUNT, AVG,

MIN, MAX

• There is also a ROW_NUMBER() function

Adding Row Number

• select dealer_id, sales, emp_name,

row_number() over (partition by dealer_id

order by sales) as `row`,avg(sales) over

(partition by dealer_id) as avgsales from

q1_sales;

Notes (con’t)

• There is also a RANK() function, which is like

ROW_NUMBER ecept that duplicates are given

the same rank (also DENSE_Rank())

• There is also NTILE() for percentile rankings

• LEAD and LAG can be used to compare adjacent

ROWS

• If writing several window functions in the same

query, may need to alias a window

Copyright Dan Brandon

Updating with SQL

• INSERT

• DELETE

• UPDATE

Copyright Dan Brandon

INSERT

• To add a new salesperson Smith (number

S6) who is in Memphis:

• INSERT INTO S

– VALUES (‘S6’, ‘Smith’, ‘Memphis’)

• If not all columns have values, need to list

the columns and order:

– INSERT INTO S

• (SID, SName)

• VALUES (‘S6’, ‘Smith’)

Copyright Dan Brandon

INSERT using query

• CREATE TABLE TEMP

• INSERT INTO TEMP

– VALUES

• SELECT SID

• FROM S

• WHERE City = ‘Copenhagen’

Copyright Dan Brandon

Access Action Queries

• For lab and project, you do not have to do

‘action queries’ in Access

• If you do, be careful because the queries

will change your tables; best to backup your

tables before trying them

• Access syntax is somewhat different from

standard SQL (refer to an Access book such

as the textbook from MIS 153 class)

Copyright Dan Brandon

Access Syntax for ‘Action Query’

• INSERT INTO TEMP

• SELECT SID AS SID

• FROM S

• WHERE City=‘Copenhagen’;

Copyright Dan Brandon

DELETE
• Single row (use primary key or unique

index):

– DELETE

• FROM S

• Where SID = ‘S5’

• Multiple rows:

– DELETE

• FROM S

• Where City = ‘Copenhagen’

Copyright Dan Brandon

UPDATE
• Increase the price of one product (P1):

– UPDATE P

• SET Price = Price + 5

• WHERE PID = ‘P1’

• Change the spelling of Copenhagen to

Koebenhavn (multiple rows):

– UPDATE S

• SET City = ‘Koebenhavn’

• WHERE City = ‘Copenhagen’

Copyright Dan Brandon

Class Exercise

• Write the SQL to increase

the prices by 10% of all

products that were sold

Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

• UPDATE P

– SET Price = Price * 1.1

– WHERE EXISTS

• (SELECT *

–FROM SP

–WHERE SP.PID = P.PID)

Copyright Dan Brandon

Stored Procedures
• SQL queries and updates can be “canned” and

stored on the server (in a client/server

environment)

• Intermediate results can be kept and processed on

the server in the same or another stored procedure

- reducing network traffic

• Application independence achieved by

maintaining common functions one place on the

server instead of in each application

• However even though stored procedures use SQL, they

also use vendor proprietary scripting languages

SQL Data Definition

SQL Data Definition (con’t)

• CREATE TABLE - Create Table

– CREATE TABLE

– CREATE TABLE AS

• DROP TABLE - Delete table and all data

– DROP TABLE SP

• ALTER TABLE

– ALTER TABLE S ADD COLUMN STATE

CHAR(2) DEFAULT ‘TN’

CREATE TABLE LIKE

• CREATE TABLE XXX LIKE YYY creates an empty

table with the same structure as the original table

• CREATE TABLE XXX AS SELECT inserts the data into

the new table

– The resulting table is not empty; only the data is copied not keys

and indices

• To create a SQL table from another table without copying

any values or keys from the old table:

– CREATE TABLE XXX

• AS (SELECT * FROM old_table WHERE 1=2);

Copyright Dan Brandon

Relational Model Example

• S (SID, SName, City)

• P (PID, PName, Size, Price)

• SP (SID, PID, Qty)

–or SP(SPID, SID, PID, Qty)

• with not null unique index on
(SID,PID) and/or (PID,SID)

S (SID, SName, City)

• CREATE TABLE S

– (SID CHAR(2) NOT NULL,

– SName VARCHAR (30),

– City VARCHAR (15),

– PRIMARY KEY (SID))

P (PID, PName, Size, Price)

• CREATE TABLE P

– (PID CHAR(2) NOT NULL,

– PName VARCHAR (20),

– Size SMALLINT,

– Price DECIMAL (5.2) NOT NULL,

– PRIMARY KEY (PID))

SP (SID, PID, Qty)

• CREATE TABLE SP

– (SID CHAR(2) NOT NULL,

– PID CHAR(2) NOT NULL,

– Qty INTEGER,

– PRIMARY KEY (SID, PID),

– FOREIGN KEY (SID) REFERENCES S,

– FOREIGN KEY (PID) REFERENCES P)

Table Modifications

• Methods:

– Alter (simple modifications)

– Drop and recreate

• Considerations:

– Existing data

– Default vales of new data

– Existing references in programs or queries

• Need for detailed plan !

• Impact minimized by using views for application
program and query reference

Typical Table Mod Procedure

• Define new temporary table with changes, new

name, and defaults

• Copy data from old table (INSERT INTO X

SELECT ...)

• Drop old table (loses views and security also)

• Create new table with indexes, security, etc.

• Copy data from temporary table

• Drop temporary table

• Restore views

DOMAINS

• CREATE DOMAIN CITIES CHAR(15)

DEFAULT ‘Memphis’;

• CREATE TABLE S

– (SID INTEGER NOT NULL,

– SName VARCHAR (30),

– City CITIES,

– PRIMARY KEY (SID))

• Not support by all RDBMS, can keep

domains in CASE product

Constraints

• Column

• Table

• Domain

• General

Column Constraints

• NOT NULL

• UNIQUE

– SSNum CHAR(9) NOT NULL UNIQUE

• DEFAULT

– State CHAR(2) DEFAULT ‘TN’

• ENUMERATED

– State CHAR(2) CHECK (State IN (‘TN’, ‘AR’, ‘MS’))

• COMPLEX

– State CHAR(2) CHECK (State IN SELECT *

– FROM STATES)

Table Constraints
[multiple columns within the same table]

• Uniqueness (multiple columns)

– CREATE TABLE PROJECT

• (ProjNo INTEGER NOT NULL,

• PID INTEGER NOT NULL,

• EID INTEGER NOT NULL,

• PRIMARY KEY (ProjNo)

• UNIQUE (PID, EID))

• Primary Keys are automatically unique

• Complex (multiple columns)

– Blouses cannot cost more than $60

– CONSTRAINT IC01 CHECK

• (P.Name NOT = ‘Blouse’ or P.Price NOT > 60)

Domain Constraints

• CREATE DOMAIN CITIES CHAR (15)

– CHECK (VALUE IS NOT NULL);

• CREATE DOMAIN CITIES CHAR (15)

– CONSTRAINT MIDSOUTH

– CHECK (VALUE IN (‘Memphis’, ‘Nashville’,

‘Little Rock’, ‘Jackson’))

General Constraints - ASSERTIONS

• Any arbitrary combination of tables and

columns involved !

• CREATE ASSERTION IC99 CHECK

– (NOT EXISTS (SELECT * FROM P, SP

WHERE P.PID = SP.PID AND (P.Price

* SP.Qty) > 100000))

• No salesperson can sell more than 100000

dollars of a product

Constraint Deferral

• Constraints may be initially activated

(IMMEDIATE) or deferred

• Later that status may be changed

• Constraints can also be qualified as not

deferrable

• Sometimes need for:

– roots of tree (or lattices)

– initial data loading for required minimum

cardinality

Access Constraints

• ValidationRule ValidationText
• <> 0 Entry must be a nonzero value

• > 1000 Or Is Null Entry must be blank or greater than

• 1000

• Like "A????" Entry must be 5 characters and begin

• with the letter "A"

• >= #1/1/96# And <#1/1/97# Entry must be a date in 1996

• If you create a validation rule for a field,

Microsoft Access doesn't normally allow a Null

value to be stored in the field

• If you want to allow a Null value, add "Is Null" to

the validation rule, as in "<> 8 Or Is Null" and

make sure the Required property is set to No

Referential Integrity Constraints

• One may define conditions for deletion

and updating of parent entities:

– Restrict

– Cascade

– Set Null

– Set Default (matching PK must exists)

• CREATE TABLE SP

– (SID CHAR(2),

– PID CHAR(2) NOT NULL,

– Qty INTEGER,

– PRIMARY KEY (SID, PID),

– FOREIGN KEY (SID) REFERENCES S ON

DELETE SET NULL,
– {if a salesperson is deleted, his orders have a null salesperson assigned to them}

– FOREIGN KEY (PID) REFERENCES P ON

DELETE CASCADE)
– {if a product is deleted, all orders for that product are also deleted}

Access Relationship Grid

Referential Integrity in Access

Access Cascading Updates and Deletes
• For relationships in which referential integrity (referential integrity: Rules that you follow to preserve the

defined relationships between tables when you enter or delete records.) is enforced, you can specify whether
you want Microsoft Access to automatically cascade update (cascading update: For relationships that enforce
referential integrity between tables, the updating of all related records in the related table or tables when a
record in the primary table is changed.) and cascade delete (cascading delete: For relationships that enforce
referential integrity between tables, the deletion of all related records in the related table or tables when a record
in the primary table is deleted.) related records. If you set these options, delete and update operations that would
normally be prevented by referential integrity rules are allowed. When you delete records or change primary
key (primary key: One or more fields (columns) whose values uniquely identify each record in a table. A
primary key cannot allow Null values and must always have a unique index. A primary key is used to relate a
table to foreign keys in other tables.) values in a primary table (primary table: The "one" side of two related
tables in a one-to-many relationship. A primary table should have a primary key and each record should be
unique.), Microsoft Access makes necessary changes to related tables to preserve referential integrity.

• If you select the Cascade Update Related Fields check box when defining a relationship, any time you change
the primary key of a record in the primary table, Microsoft Access automatically updates the primary key to the
new value in all related records. For example, if you change a customer's ID in the Customers table, the
CustomerID field in the Orders table is automatically updated for every one of that customer's orders so that the
relationship isn't broken. Microsoft Access cascades updates without displaying any message.

• Note If the primary key in the primary table is an AutoNumber (AutoNumber data type: In a Microsoft Access database, a field
data type that automatically stores a unique number for each record as it's added to a table. Three kinds of numbers can be
generated: sequential, random, and Replication ID.) field, setting the Cascade Update Related Fields check box will have no
effect, because you can't change the value in an AutoNumber field.

• If you select the Cascade Delete Related Records check box when defining a relationship, any time you delete records in the
primary table, Microsoft Access automatically deletes related records in the related table. For example, if you delete a customer
record from the Customers table, all the customer's orders are automatically deleted from the Orders table (this includes records in
the Order Details table related to the Orders records). When you delete records from a form or datasheet with the Cascade Delete
Related Records check box selected, Microsoft Access warns you that related records may also be deleted. However, when you
delete records using a delete query (delete query: A query (SQL statement) that removes rows matching the criteria that you
specify from one or more tables.), Microsoft Access automatically deletes the records in related tables without displaying a
warning.

Constraint Application

• It may be better to place your constraints in the

database rather than in the application program:

– easier maintenance (one place instead of in every

program)

– enforced for direct SQL usage as well as via

application programs

– more efficient

• However not all database systems handle all referential

integrity options, and in an application program you

can code whatever type of referential integrity you

need and give the user better error messages

Data Structures and Constraints

• Tree data structure

– All entries except the top

(root) have a master

record

• Forest data structure

– Multiple trees

• Queue

– FIFO

• Stack

– LIFO

Referential Integrity Checking in

Application Code (Insertion)

• if ($master != "") { // referential integrity check in PHP/MySql for Web App

• if ($level == 0) {

• echo '<h2>Error: If a Master WBS Code is specified,’;

• echo ‘ the level must not be zero !</h2>';

• exit;

• }

• $query2 = "select * from $tableName where wbsCode='".$master."';";

• $result2 = mysql_query($query2);

• $num_results2 = mysql_num_rows($result2);

• if ($num_results2 == 0) {
echo '<h2>Error: Invalid/Non-existent Master WBS Code !</h2>';

• exit;

• }

• }

Class Example

• Given the relations:

– FACULTY (Fname, Status)

– ADVISEE (SID, SName, Major, ...)

– GRAD-ADVISEE (SID, GFname) SubTypes

– UGRAD-ADVISEE (SID, FName)

• Develop SQL constraints for:

– Status is 0 (undergrad faculty) or 1 (grad faculty)

– SID for graduate students start with 9, undergrads do

not

– Graduate students only have graduate faculty for

advisors

Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

• CREATE TABLE FACULTY

– ...

– Status CHAR (1) NOT NULL CHECK (Status IN (0,1))

• CREATE TABLE UGRAD-ADVISEE

– ...

– SID CHAR (...) NOT NULLCHECK (SID NOT LIKE 9%)

• CREATE TABLE GRAD-ADVISEE

– SID CHAR (...) NOT NULL CHECK (SID LIKE 9%)

– GFName CHAR (...) CHECK (GFName IN (SELECT

FName FROM FACULTY WHERE Status = 1))

Views [Access Queries]

• A virtual table derived from one or more other tables

(or other views)

• Defined via SQL

• View definition is stored but the user data is only

stored in the underlying tables

• Use view names in SQL queries just like table names

(almost)

• On some systems, some views are updateable (such

as those created from one table)

View Usage

• Make queries easy for end users

• Application Independence -

applications coded to views instead of

actual tables

• Security - certain uses have access to

only parts of table(s)

View Syntax

• CREATE VIEW SALESPERSON AS

– SELECT SName, City

– FROM S

– ORDER BY SName

• CREATE VIEW SALES AS

– SELECT SName, PName, Qty

– FROM S, SP, P

– WHERE S.SID = SP.SID and P.PID = SP.PID

– ORDER BY Pname

Easy Queries for End Users

• SELECT *

• FROM SALES

• WHERE Qty > 100

Views with Groups

• CREATE VIEW SALESCOMMISSION (

Salesperson, Commission) AS

– SELECT SName, SUM (Price *Qty *.1)

– FROM S, SP, P

– WHERE S.SID = SP.SID and P.PID = SP.PID

– GROUP BY SID

– ORDER BY SName

View Translation

• CREATE VIEW EXPENSIVE AS

– SELECT PName, Price

– FROM P

– WHERE Price > 50

• UPDATE EXPENSIVE

– SET Price = Price + 5

– WHERE PName = ‘Blouse’

• UPDATE P TRANSLATION

– SET Price = Price + 5

– WHERE PName = ‘Blouse’

– AND Price > 50

Illegal View Retrievals

• CREATE VIEW PQ (PID, TotQty) AS

– SELECT PID, SUM (Qty)

– FROM SP

– GROUP BY PID

• SELECT PID

– FROM PQ

– WHERE TotQty > 500

• SELECT PID Translation - illegal, need HAVING

– FROM SP

– WHERE SUM (Qty) > 500

– GROUP BY PID

Illegal View Usage

• A FROM clause that references a grouped

view is not allowed to have an associated

WHERE clause, GROUP BY clause, or

HAVING clause

• SELECT PID Legal

– FROM SP

– GROUP BY PID

– HAVING SUM (Qty) > 500

Updateable Views

• It does not include the word distinct

• Every item in the select clause consists of a simple

reference to a column of the underlying table (ie it

is not a constant, nor an operational expression,

nor an expression involving a function)

• The FROM clause identifies exactly one table and

that table is updateable

• The WHERE clause does not include a subquery

• There is no GROUP BY or HAVING Clause

Procedural SQL

• Performs a conditional or looping operation by

isolating critical code and making all

application programs call the shared code

– Better maintenance and logic control

• Persistent stored module (PSM): block of code

– Contains standard SQL statements and procedural

extensions that is stored and executed at the DBMS

server

• Use and syntax of procedural SQL varies by

vendor

Procedural SQL (con’t)

• Procedural Language SQL (PL/SQL)

– Use and storage of procedural code and SQL

statements within the database

– Merging of SQL and traditional programming

constructs

• Procedural code is executed as a unit by DBMS when

invoked by end user for:

– Triggers

– Stored procedures

– PL/SQL functions

Triggers
• A trigger causes an SQL statement (or stored procedure) to

be automatically invoked whenever certain events (insert,

update, or delete) happen to a table (or a view)

• CREATE TRIGGER T01

– AFTER UPDATE OF P.OnHand ON P

– WHEN (P.OnHand < P.ReorderPoint)

– BEGIN

• PERFORM Reorder (PID)

– END

• Also can specify if action is to be performed just once per

table or for each row, and maybe able to specify “before”,

“after”, or “instead of”

• Triggers are typically not pre compiled, but cached

Trigger Uses

• Synchronization of denormalized tables

• Sums and other computed values of entire tables

• Automatically invoking application level functions; for

example, reorder a part whenever the stock on hand

falls below the reorder point

• Enforcing business rules that cannot be directly handled

with constraints; or checking constraints upon certain

database conditions

• PENDANTS - clean up; for example deleting the parent

when the last child is deleted

Trigger Cautions

• Users unaware of triggers

– Example: order clerks using dummy

orders to reserve stock

• Trigger/lock conflicts

• Cascading of triggers & infinite loops

Access Triggers (Events)

• The Activate event occurs when a form or report

receives the focus and becomes the active window

• The Deactivate event occurs when a form or report

loses the focus to a Table, Query, Form, Report,

Macro, or Module window, or to the Database

window

• Note: The Deactivate event doesn't occur when a

form or report loses the focus to a dialog box, to a

form for which the PopUp property is set to Yes,

or to a window in another application

• To run a macro or event procedure when these
events occur, set the OnActivate, or OnDeactivate
property to the name of the macro or to [Event
Procedure]

• You can make a form or report active by opening
it, clicking it or a control on it, or by using the
SetFocus method in Visual Basic (for forms only)

• The Activate event can occur only when a form or
report is visible

• The Activate event occurs before the GotFocus
event; the Deactivate event occurs after the
LostFocus event

• Can also have macros triggered from GotFocus,
LostFocus, and other events

Stored Procedures

• Named collection of procedural and SQL statements

– Stored in the database

– Can be used to encapsulate and represent business transactions

• Advantages

– Reduce network traffic and increase performance

– Decrease code duplication by means of code isolation and code sharing

• They are typically written in the proprietary language of the

database (but some new versions of products may also allow them

to be written in Java)

• They allow functional logic to be maintained within the database

instead of the application

• Table changes require recompilation of associated stored

procedures

Embedding SQL in Program Code

• SQL works in “sets”, but programs (Java,
C++, PHP, etc.) use data in variables,
arrays, vectors (or other data structures), or
files

• To convert from sets to program variables:

– Older systems use the concept of “result files”
and “cursors”

– Newer systems represent results sets as arrays
of arrays (2 dimensional arrays or tables) or
vectors of vectors

SQL in Program Code (Java)
• public void execSQLCommand(String command) // the string argument is an SQL statement

• {

• try {

• theStatement = theConnection.createStatement();

• theResult = theStatement.executeQuery(command); // vector of rows

• theMetaData = theResult.getMetaData();

• int columnCount = theMetaData.getColumnCount();

• theDisplay.setText("");

• while (theResult.next()) // move to next row

• {

• for (int i = 1; i <= columnCount; i++)

• {

• String colValue = theResult.getString(i); // get column i, for current row

• if (colValue == null) colValue = "";

• theDisplay.append(colValue + ";");

• }

• theDisplay.append("\n");

• }

• } catch (Exception e)

• { handleException(e); }

• }

SQL in Program Code (PHP)

• $query = "select * from s";

• $result = mysql_query($query); // $result is an array of arrays (rows)

• $num_results = mysql_num_rows($result);

• echo '<P><H2>Number of records found: '.$num_results.'</H2></P>';

• echo '<TABLE BORDER>';

• for ($i=0; $i<$num_results; $i++)

• {

• $row = mysql_fetch_array($result); // $row is an array of columns

• echo '<TR>';

• echo '<TD>'.htmlspecialchars(stripslashes($row['sid'])).'</TD>';

• echo '<TD>'.htmlspecialchars(stripslashes($row['sname'])).'</TD>';

• echo '<TD>'.htmlspecialchars(stripslashes($row['city'])).'</TD>';

• echo '</TR>';

• }

• echo '</TABLE>';

Copyright Dan Brandon

References
• SQL for SMARTIES; Celko, J.; 1-55860-323-9

• SQL Queries: 200+ Queries to Challenge you

by Swaroop Kallakuri

• Sql Guide (Quick Study: SQL) by Inc. BarCharts

• SQL Practice Problems: 57 beginning, intermediate,

and advanced challenges for you to solve using a

“learn-by-doing” approach by Sylvia Moestl Vasilik

• SQL in 10 Minutes a Day, Sams Teach Yourself

by Ben Forta

https://www.amazon.com/Ben-Forta/e/B001H6INFU?ref=sr_ntt_srch_lnk_15&qid=1590170570&sr=1-15

Copyright Dan Brandon

Homework
• Textbook Chapter 8

• More SOC queries (16 thru 24)

• Access model for SOC queries of last
lesson

– SOC.mdb - download from course web site-
see next slide

• Do “save as” first

• SQL Test coming soon

Copyright Dan Brandon

SOC E-R Diagram

SOC Access Model

Copyright Dan Brandon

Copyright Dan Brandon

S (Salesperson Table)

Copyright Dan Brandon

C (Customer Table)

Copyright Dan Brandon

O (Order Table)

Copyright Dan Brandon

SQL Homework Queries

• 16. Show the names and quota percentages of salespeople who have an order with
ABERNATHY CONSTRUCTION, in descending order of quota percentage (use a
subquery).

• 17. Show the names and quota percentages of salespeople who have an order with
ABERNATHY CONSTRUCTION, in descending order of quota percentage (use a
join).

• 18. Show the quota percentages of salespeople who have an order with a customer
in MEMPHIS (use a subquery).

• 19. Show the quota percentages of salespeople who have an order with a customer
in MEMPHIS (use a join).

• 20. Show the industry type and names of the salespeople of all orders for
companies in MEMPHIS.

• 21. Show the names of salespeople along with the names of the customers which
have ordered from them. Include salespeople who have had no orders. Use
Microsoft Access notation.

• 22. Show the names of salespeople who have two or more orders.

• 23. Show the names and quota percentages of salespeople who have two or more
orders.

• 24. Show the names and quota of salespeople who have an order with all
customers.

