

SOL

 Categories of SQL commands/functions
— Data definition language (DDL)
— Data manipulation language (DML)
— Transaction control language (TCL)
— Data control (security) language (DCL)

» Nonprocedural language with basic command
vocabulary set of less than 100 words

e Differences in RDBMS Vendors dialects and
capabilities

Learning SQL

SQL requires study plus trial/error

Understanding relational algebra provides a
deeper understanding of SQL

Going thru this lesson one time and/or reading
the corresponding textbook chapter one time will
likely not be enough

You need to practice with a lot of queries to gain
a solid understanding of SQL

Copyright Dan Brandon

Relational Algebra

 Relational Algebra is a procedural way to perform
database queries

« SQL is non-procedural and based upon the mathematics
of relational and predicate calculus

.,

.
. SQL Query
.“\‘-__ .)'/.

Executable Code

Copyright Dan Brandon

Case Study Tables
|salesperson, product, sales]

* S (SID, SName, City)
« P (PID, PName, Size, Price)
« SP (SID, PID, Qty)

Copyright Dan Brandon

S1
S2
S4
SE

Salesperson Table (S)

SID

Shame
Peterson

Olsen
Hansen

Jensen

Copyright Dan Brandon

City
Aarhus
Copenhagen

Odense

Copenhagen

0]
03
04
5
g

Product Table (P) .

PID PName Size
Shirt

6
Trousers 5
Socks {
Blouse 6
Blouse 8

Copyright Dan Brandon

Price
50

90
20
50
60

S2
S2
S4
S4
SO
S5
S5
SO
S5

SP Table (Intersection Table)

SID

P1
P3
P5
P8
P1
03
D4
o5
08

PID

Copyright Dan Brandon

200
100
200
100
50

500
800
500
100

Qty

Access Relationship Grid

Relationships

Download this Access file (SP) form the online syllabus.

Copyright Dan Brandon

Schedule/Content

» Database Introduction

« Data Models

» Relational Model

« Entity-Relationship Model
+ Advanced Data Modeling
» Normalization

» Basic SQL

» Advanced SQL

» Database Design
+ Transaction Control

 Tuning and Optimization
« Distributed Databases

« Business Intelligence

« Big Data and NoSQL

« Database Web Technology

« Database Administration

SP Access File

MIS 471

Database Design & Management

(3 Credits)

Understanding database technology is essential to building
modern business computer applications in either a classical
environment or in the Internet environment. In a recent
national Information Week survey, database technologies
were noted in 3 out of the top 5 IT areas where more
qualified IS professional would be needed in the next decade.

Please enter attendance information:

First Nme:| |
Last Name:[]
Course :miss71 |
[submit | el

Links

» General Course Policies
» Contact Information

« ER Design Tool

» SP Database (Access)

+ SQL Lab Database (Access)

« Example Project
« PHP/MySql Query

—

SQL Data Definition Language

e Create Table

— Columns (names, allow nulls, and data types)
— Primary Key
— Foreign Key
— Indexes

CRENTE
. R
_ Column Constraints / f mr
— Table Constraints

TRUNCATE
PPL—
Data Definition Canguag

Ge

\/ DRov¥

Copyright Dan Brandon

S (SID, SName, City)

« CREATE TABLE S

— (SID CHAR(2) NOT NULL,
— SName VARCHAR (30),

— City VARCHAR (15),

— PRIMARY KEY (SID))

Copyright Dan Brandon

S (SID, SName, City)

e Alternative forms

— CREATE TABLE S
« (SID CHAR(2) Primary Key,
« SName VARCHAR (30),
« City VARCHAR (15))

— CREATE TABLE S
* (SID CHAR(2) NOT NULL,
« SName VARCHAR (30),
« City VARCHAR (15))

« ALTER TABLE S ADD PRIMARY KEY (SID))

 Can also add other table features: index, unique
index, constraints, foreign key, ...

Copyright Dan Brandon

P (PID, PName, Size, Price)

- CREATE TABLEP

_ (PID CHAR(2) NOT NULL,

~ PName VARCHAR (20),

_ Size SMALLINT,

~ Price DECIMAL (5.2) NOT NULL,

— PRIMARY KEY (PID))

Copyright Dan Brandon

SP (SID, PID, Qty)

- CREATE TABLE SP

— (SID CHAR(2) NOT NULL,
_ PID CHAR(2) NOT NULL,
~ Qty INTEGER,

~ PRIMARY KEY (SID, PID),
_ FOREIGN KEY (SID) REFERENCES S,
_ FOREIGN KEY (PID) REFERENCES P)

« May also be able to add referential integrity
actions, discussed later

Copyright Dan Brandon

Basic Data Types

(specific RDBMS may have mode/different types)

CHARACTER(n) or CHAR (n) - fixed length string of n
characters (ie STATE)

CHARACTER VARYING or VARCHAR(N) - varying
length string of up to n characters

MEMO (text area)

BIT(n) & VARBIT(n) & Yes/No
INTEGER, SMALLINT, TINYINT
FLOAT or REAL & DOUBLE

DECIMAL(p,q) & NUMERIC (p,q) - assumed decimal
point g digits from the right (0 <=q <=p)

DATE, TIME, and TimeStamp (date/time)

BLOB (Binary Large Object)

Copyright Dan Brandon

Data Type

BIGINT(size)

BIGINT(size)
UNSIGNED

BLOB
BOOLEAN

CHAR(size)

DATE()
DATETIME()

DECIMAL(size,

fractional_digits)

DOUBLE(size,

fractional_digits)

ENUM(a, b, c)

FLOAT(size,

fractional_digits)

Data Types (con’t)

Description

Stores an integer value In the range

-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807, where size specifies the
maximum number of digits

Stores an integer value in the range 0 to 18,446,744,073,709,551,615, where size
specifies the maximum number of digits

Stores a binary large object up to 65,535 bytes
Stores a true or false value

Specifies a fixed-size string up to 255 characters, where size specifies the maximum

number of characters
Stores a date in the form YYYY-MM-DD
Stores a date and time in the form YYY-MM-DD HH:MM:SS

Stores a DOUBLE as a string, where size specifies the number of digits and

fractional_digits specifies the number of digits to the right of the decimal point

Stores a double-precision floating-point number, where size specifies the number of
digits and fractional_digits specifies the number of digits to the right of the decimal

point
Stores a set of up to 65,535 enumerated values

Stores a floating-point number, where size specifies the number of digits and

fractional_digits specifies the number of digits to the right of the decimal point

INT(size)

INT(size) UNSIGNED

LONGBLOB
LONGTEXT
MEDIUMELOB
MEDIUMTEXT
SET(a, b, ¢)
SMALLINT(size)

SMALLINT (size)
UNSIGNED

TEXT
TINYTEXT

TINYINT(size)

TINYINT(size)
UNSIGNED

VARCHAR(size)

Data Types (con’t)

Stores an integer value in the range

—2.147 483 648 to 2,147 483 647, where size specifies the maximum number of
digits

Stores an integer value in the range 0 to 4 294 967 295, where size specifies the

maximum number of digits

Stores binary large object up to 4,294 967 295 bytes

Stores a string of up to 4,294 967 295 characters

Stores a binary large object up to 16,777,215 bytes

Stores a string of up to 16,277,215 characters

Stores a set of up to 64 enumerated values

Stores an integer value in the range

—32,768 to 32,767, where size specifies the maximum number of digits

Stores an integer value in the range 0 to 65,535, where size specifies the maximum
number of digits

Stores a string of up to 65,535 characters

Stores a string of up to 255 characters

Stores an integer value in the range

—128 to 127, where size specifies the maximum number of digits

Stores an integer value in the range 0 to 255, where size specifies the maximum

number of digits

Stores a variable-length string of up to 255 characters, where size specifies the

maximum number of characters

NULL

NULL values in tables, means unknown value
NULL table results, means empty table
Installation defined implementation

Area of incompatibility between RDBMS
Operations: IS NULL or IS NOT NULL
Ignored in functions (ave, max, ...)

Arithmetic. If A or B or BOTH are NULL then all these expressions
evaluate to NULL: A+B, A-B, A*B, A/B

NULLS are equal to each other

Logic. If A or B or BOTH are NULL then all these expressions use the
unknown truth table (next slide): A=B, A NOT = B, A>B, A<B,
A>=B, A<=B; Example: “A<>3" 1s not true for NULL A

Copyright Dan Brandon

http://3.bp.blogspot.com/-gIbY-Tqv34I/Tdm2v0h_brI/AAAAAAAAAkw/l7_ZNQQ0HiU/s1600/null.gif

Truth Table with Unknowns

“p pDF‘ta pANDg | p=g

[Tue [Tue [Tue frue
False True False False
Unknown [Tue Unknown Unknown Unknown | Unknown
|
False False False TTue
Unknown | Unknown False Unknown

Linknown | rue [Tue Linknonsin Unknown

Unknown alse Unknown [False Unknown

A LUnknown Unknown | Unknown LInknown Unknown

Copyright Dan Brandon

Retrieving Data via SQL

 SELECT columns-in-output-tables
— FROM input-tables
— WHERE logical-expression
— ORDER BY columns -In-output-tables

« QOutput Is always a table

— may be a table with only one row and/or
column (“singleton”)

— may be a NULL table E@E
Copyright Dan Brandon

Access “Query by Example”

* Query-By-Example (QBE) is also non-
procedural

* There 1s no standard for QBE
* Not all queries can be done in OBE

* Perform an Access QBE to answer this
question (save as “Q1”):

—“In which cities are salespersons
located ?”

Copyright Dan Brandon

=i
Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

Access Query Grid
[Query by Example]

Copyright Dan Brandon

Access SQL View

External Data Database Tools ¢ Tell me what you want to do...

| 71 |

L]

i i) Union s ‘-'— Insert Rows

2 Pass-Through
Run Select Make Append Update Crosstab Delete Show

b Jm| .
Tahble Table il Return: | All

Query Type Query Setup
Datasheet View

Some active content has been disabled. Click for more details, Enable Content

SQL sal View L@«
- =t Q1 - Projection

h-_/ Design View

Quernes ? sip
ﬁ 1 - Projection SHame

NOT IN

YT Yy

2 - Caluculated Value

Field: | City
Table: |5
In Subgquery sort: | Ascending

Show:

B - Jain vs Subgueéry Criteria:
ar

- Exists subguen

5 - Subguery of Same T...

G G

o - Fundtions

Copyright Dan Brandon

Access SQL View

C EEEEE - Query Tools
e Home Create External Data Database Tools Design
I-? Iﬁ == @ E:}" @ ﬁ a (10 Union
F o
N —e ¢ e * @ Pass-Through
Run Select | Make Append Update Crosstab Delete o
Table g, Data Definition

Results CQuery Type

Security Warning Certain content in the database has been disabled Options...

:::_'UET'iEE SELECT DISTIMCT 5.City

FROM 5
1 - Prajection |I:] RDER BY 5.City;

Q10 - NOTIN

11 - Like

2 - Caluculated Value
13 - Exists subquery

144 -In Subquery

(14E - Join vs Subquery

Copyright Dan Brandon

Relational Algebra PROJECTION

(““project’” certain columns)

+ SELECT DISTINCT City
“FROM S
_ORDER BY City

« DISTINCT removes redundant columns*

* “In which cities are salespersons located ?”

* *In Access, select “View” then
“Properties” to set query properties; select
“unique values” to “yes”

Copyright Dan Brandon

Q1
City
Aarhus

Copenhagen

Odense

Copyright Dan Brandon

1 - Pro

Field:

Table: |
Sort:
Show:
Criteria:
or:

Copyright Dan Brandon

Selectior

General

Description

Default View
Qutput All Fields
Top Yalues

Unique Values
Unique Records
Source Database
Source Connect Str
Record Locks
Recordset Type
ODEC Timeout
Filter

Order By

Mazx Records
Orientation
Subdatasheet Name
Link Child Fields
Link Master Fields
Subdatasheet Height
Subdatasheet Expanded
Filter On Load
Order By On Load

Datasheet
Mo

Mo
[current]
Mo Locks

Dynaset
]

Left-to-Right

Distinct & Distinctrow

 In Access:

—DISTINCT - Shows rows if selected
columns are unique

—DISTINCTROW - Shows rows If
entire row from underlying table(s)
are unique

Copyright Dan Brandon

Access Exercise

 Perform an Access query via the
guery grid to answer this question:

—“Laist all info for salespersons in
Copenhagen”

Copyright Dan Brandon

=i
Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

Relational Algebra SELECTION (WHERE)
(“select” certain rows)

SELECT *

—FROM S

— WHERE City = ‘Copenhagen’

— ORDER BY SName DESC

“List info for salespersons in Copenhagen”
* selects all columns

DESC sorts in descending order

Copyright Dan Brandon

Q2 [Q2a, SQL design alternative (without

checking any “show” boxes, “show all” 1n
properties)]

SID Sname City

S2 Olsen Copenhagen

S5 Jensen Copenhagen

Copyright Dan Brandon

Parameter Query

« Which salespersons live In

 Standard SQL.:
— SELECT S.SID, S.SName, S.City
— FROM S
— WHERE (S.City=?);

Copyright Dan Brandon

Parameter Query in Access (Q2Db)

Copyright Dan Brandon

Access Exercise

 Perform an Access query via the
guery grid to answer this question:

— Which salespersons (SID’s) are either 1n
Copenhagen or have sold some P8 ?

Copyright Dan Brandon

=i
Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

UNION [Q3, via Join]
[Q3a, SQL Union, no Access QBE design] (members in either set)

* Which salespersons (SID’s) are either in
Copenhagen or have sold some P8 ?

« SELECT SID
— FROM S
— WHERE City = ‘Copenhagen’
— UNION
— SELECT SID
— FROM SP WHERE PID = ‘P&’

« The result Is the table with the column containing
S2, 54, S5 (the UNION removes duplicate rows,
there iIsa UNION ALL to retain any duplicates)

Copyright Dan Brandon

 Access, like many RDBMS, cannot do
Unions, Intersection, and Differences via

their GUI QBE

* |In fact, Access (and many others) cannot do
Intersection or Difference at all

» For Query Optimization (necessary for
Enterprise Applications) needs to be done in

SQL not QBE

Copyright Dan Brandon

Access Exercise

 Perform an Access query via the
guery grid to answer this question:

— Which salespersons (SID’s) are both in
Copenhagen and have sold some P8

Copyright Dan Brandon

=i
Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

INTERSECTION [q4]

[no Access Intersection, need to use join]
(members in both sets)

* Which salespersons (SID’s) are both In
Copenhagen and have sold some P8

« SELECT SID
— FROM S
— WHERE City = ‘Copenhagen’
— INTERSECT
— SELECT SID
— FROM SP
— WHERE PID = ‘P&’

Copyright Dan Brandon

SQL Join

* The “join process’ (inner join) involves
multiplying two (or more) tables together
and then removing the rows that do not
meet a “join criteria”

« Multiplying two tables together involves
taking all possible combinations of the rows
from the first table with the rows from the
second table

Copyright Dan Brandon

Product of Two Tables

Create A Table With All Possible

Combimations of Students and

Courses

Copyright Dan Brandon

Inner Join

« SELECT DISTINCT S.SID

« FROM S INNER JOIN SP ON S.SID =
SP.SID

* The join criteria 1s “S.SID = SP.SID” which
IS the typical join criteria (matching the
primary key of the first table with the
corresponding foreign key in the second
table)

Copyright Dan Brandon

Union via Join

« SELECT DISTINCT S.SID
« FROM S INNER JOIN SP ON S.51D = SP.SID

« WHERE S.City = ‘Copenhagen” OR SP.PID =
6P87

Copyright Dan Brandon

Intersection via Join

« SELECT DISTINCT S.SID
« FROM S INNER JOIN SP ON S.5ID = SP.SID

 WHERE S.City = ‘Copenhagen’ AND SP.PID
= ‘P8’;

Copyright Dan Brandon

Sl
S2
S4
S5

Access Exercise

. SID PID
Sname (13% - 4

 Perform an Access query via the

query grid to answer this question:

— Daisplay the salespersons (SID’s) in
Copenhagen who have not sold any P8

Copyright Dan Brandon

Qty
200

=i
Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

DIFFERENCE [Q5, no Access difference]

(EXCEPT or MINUS, varies by vendor)

 Display the salespersons (SID’s) in

Copenhagen who have not sold any P8
« SELECT SID

— FROM S

— WHERE City = ‘Copenhagen’

— EXCEPT

— SELECT SID

— FROM SP

— WHERE PID = ‘P8’

Copyright Dan Brandon

Need to
use sub
queries
In
Access !

What’s wrong with this; why does
this not produce a difference ?

« SELECT DISTINCT S.SID
« FROM S INNER JOIN SP ON S.51D = SP.SID

 WHERE S.City=‘Copenhagen’ AND SP.PID
not = "P8": use “<>’ 1n Access

T=T1-T2=[S2]

e 11 (in Copenhagen) ® T2 (sold P8)
—S2 —34
—S5 —S5

The join will yield 14 rows (two for S [Copenhagen] and seven
for SP [not P8]), and the projection of SID will yield two rows

for S2 and S5, because S5 also has a row(s) in SP

that are for products other that P8 ! But only S2 is the answer .

Copyright Dan Brandon

SQL/92 “Standard” Join

TABLE_REF NATURAL {JOIN_TYPE} JOIN TABLE_REF

— Where:

« TABLE_ REF is the name (or alias) of a table

« {JOIN_TYPE} (INNER is the default):
— INNER
— LEFT {OUTER}
— RIGHT {OUTER}
— FULL {OUTER} If the join condition is the equality

between the columns in common, the
join is called an equijoin.

If one of the two common columns in an
equijoin is eliminated, then it is called a
natural join (the most common kind of
join which removes the redundancy)

Copyright Dan Brandon

OR

« TABLE REF {JOIN _TYPE} JOIN TABLE REF
ON EXP
— Where:
« TABLE_ REF is the name (or alias) of a table

« EXP iIs an expression

« {JOIN_TYPE} is (INNER is the default):
— INNER
— LEFT {OUTER}
— RIGHT {OUTER}
— FULL {OUTER}

 Alternative form (“legacy SQL”):
— TABLE REF, TABLE REF WHERE EXP

Copyright Dan Brandon

OR

« TABLE_REF {JOIN_TYPE} JOIN
TABLE_REF USING COLS

— Where:
« TABLE REF is the name (or alias) of a table
» COLS is a column list (same names in both tables)

« {JOIN_TYPE} is (INNER is the default):
— INNER
— LEFT {OUTER}
— RIGHT {OUTER}
— FULL {OUTER}

Copyright Dan Brandon

Acceptable Forms of the Join

« SELECT SName, Qty
— FROM S NATURAL JOIN SP [PK and FK match]

« SELECT SName, Qty

— FROM S JOIN SP ON S.SID = SP.SID

— Or “legacy form”: <

« SELECT SName, QTY
—FROM S, SP
» WHERE S.SID = SP.SID

« SELECT SName, Qty

— FROM S JOIN SP USING (SID) [called ‘SID’ in both tables]

Copyright Dan Brandon

SQL JOIN Support

Some (currently most) products only
support “legacy form”

Some products (Access) do not support (or
partially support) legacy form

Some products support both (to some
degree)

Inner joins cannot be nested within outer
joins, but outer joins can be nested within
Inner joins

Copyright Dan Brandon

JOIN - *““Show names of
salespersons with product sold info™

 SELECT SName, S.SID, PID, Qty
— FROM S, SP
— WHERE S.SID = SP.SID
« Common column is SID; If they have the
same name then specify the table:
— TableName.ColumnName

« Access SQL syntax:
— FROM S INNER JOIN SP ON S.SID=SP.SID

Copyright Dan Brandon

SName
Olsen

Olsen
Hansen
Hansen
Jensen
Jensen
Jensen
Jensen
Jensen

S2
S2
S4
S4
SO
SO
SO
SO
SO

Q6

SID PID
P1

P3
PS
P8
P1
P3
P4
PS5
P8

Copyright Dan Brandon

200
100
200
100
50

500
800
500
100

Qty

Include info for all salespersons

« SELECT SName, S.SID, PID, Qty
— FROM S LEFT OUTER JOIN SP
— WHERE S.SID = SP.SID

 OR:
— SELECT SName, S.SID, PID, Qty
— FROM S LEFT OUTER JOIN SP
— ON S.SID =SP.SID

. Q6a o0 G

Copyright Dan Brandon

Access Outer Join In QBE
[right click join arrow]

Jba - Outer join

SID
SMami Join Properties

Left Table Mame Right Table Name

5 =

Left Column Name Right Column Name

el 5ID E| SID E

Table: | . 1: Onlyindude rows where the joined fields from both tables are equal.
Sort:

Show:
Criteria:
ar

2: Indude ALL records from 'S’ and only those records from 'SP

where the
joined fields are equal.

Indude ALL records from 'SP and only those records from 'S’ where the
joined fields are equal.

| | Cancel | |

Copyright Dan Brandon

Other QOuter Join SQL Syntax

 In Transact-SQL (SQLServer):
— SELECT SName, S.SID, PID, Qty
—~ FROM S LEFT OUTER JOIN SP
— WHERE S.SID *=SP.SID

* In PL/SQL (Oracle):
— SELECT SName, S.SID, PID, Qty
—~ FROM S LEFT OUTER JOIN SP
— WHERE S.SID = SP.SID+

Copyright Dan Brandon

SQL Query Approach
[thus far]

1. Understand problem
2. What tables are involved ?

3. If more than one table, then what operation is
need between the tables:

— Join (inner or outer), Union, Intersection, Difference
4. What are the selection criterion ?

5. What columns need to be projected ?

6. Any sorting ?

Copyright Dan Brandon

Class Exercise

« Write the SQL to display the
product names (Pname) and
quantities (Qty) of products
sold for SID °‘s

e Check your answer in Access

Copyright Dan Brandon

=i
Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

Q7

« SELECT SID, PName, Qty
—FROM P, SP
—~WHERE P.PID = SP.PID

Include Salesperson names:

« SELECT SID, SName, PName,
Qty
—FROM P, SP, S
—~WHERE P.PID = SP.PID
—AND SP.SID =S.SID

* When N tables are joined, N-1 join

criterion are needed !

Cross Join

* A “cross join” (full outer join) 1s
the same as the Cartesian Product
In relational algebra (the
combination of all rows of the first
table with all rows of the second

table):
—SELECT SID, PID
B FROM S, P Copyright Dan Brandon

SQL JOINS

SELECT <sclect list>
FROM TableA A
LEFT JOIN TableB B
ON A.Key = B.Key

SELECT <sclect_list>
FROM TableA A
RIGHT JOIN TableB B
ON A.Key = B.Key

SELECT <seclect_list>
FROM TablcA A
INNER JOIN TablcB B
ON A.Key = B Key

SELECT <sclect_list> SELECT <select_list>
FROM TablcA A FROM TablcA A

LEFT JOIN TablcB B RIGHT JOIN TableB B
ON AKey = B.Key ON A.Key = B.Key
WHERE B.Key IS NULL WHERE A.Key IS NULL

SELECT <sclect_list>
SELECT <sclect_list> FROM TableA A

FROM TableA A FULL OUTER JOIN TablcB B
FULL OUTER JOIN TableB B ON A.Key = B.Key

ON A.Key = B.Key WHERE A Key IS NULL

© CL MotTatt, 2008 OR B.Key ISNULL

Self Joins

« Tables may be joined with themselves
* Need to give the table(s) alias names

 Display a list of products that can be
supplied In a size that Is two sizes larger
(product names have to be the same)

— See next slide...

Copyright Dan Brandon

1
03
i
5
g

Product Table (P)
PID PName Size

Shirt 6
Trousers 5
Socks {
Blouse 6
Blouse 8

Copyright Dan Brandon

Price
50

90
20
50
60

Display a list of products that can be supplied
in a size that 1s two sizes larger...

* TWO ways:

— Multiply the tables together to find all
combinations of one product matched with
another product; then strike out all the rows that
do not match the join criteria

— For each row

 Look at all the other rows that match the
criteria (subqgueries - discussed later)

Copyright Dan Brandon

SQL Self Join

+ SELECT X.PID
_FROMPX,PY (PasX,PasY)

—WHERE (X.PName = Y.PName)
AND (X.Size + 2 = Y.SIZE)

» The answer Is the single value P5

[Q8]

Copyright Dan Brandon

Self Join Applications

e Self Joins are also common In
auditing queries:

—Find missing (skipped) control
numbers (ie Invoice numbers)

—Find duplicating fields (ie
duplicate payments, etc.)

Copyright Dan Brandon

SQL Logical Operators

Operator Description Negation (not)
— Equal to YeS

< Less than YeS

<= Less than or equal to N 0

S Greater than Y es

S= Greater than or equal to |\ 0

logical expression is true if at least one of
O R the arguments of OR is a true expression I\' 0
AN D logical expression is true if both argumnts |\ 0

are true expressions

Can also use <> or != instead of “not =
Copyright Dan Brandon

SQL Logical Operators

Operator Description Negation
BETWEEN Expression is true if the operand lies within a Yes

spepcified interval, including the limits

IN Expression is true if the operand is included YeS
in a stated table with one column; this
operator corresponds to the set operator ‘is a
member of’

EXISTS Expression is true if there are rows in the Yes
table serving as the argument; corresponds to
the set existential operator

LIKE Expression is true if a character column Yes
contains certain selected combinations of
columns

Copyright Dan Brandon

Display product numbers of blouses In
the price range of $30 to $60: [Q9]

« SELECT PID
—FROM P

—WHERE (PName = ‘Blouse’) AND
(Price BETWEEN 30 AND 60)

« The output Is the table with two rows: P5 and P8
 Output would include both $30 and $60 blouses
 Note that Blouse is in quotes and 30 (or 60) is not

Copyright Dan Brandon

Quotes

Standard SQL uses the single quote for literal text strings
Access uses the double quote for text strings
Some products can use either

For standard SQL, only use the double quotes for the AS clause
with keywords as titles:

— Select Name as “select” from ...

With ODBC (or JDBC) and even if you are using ODBC for an
Access File, use the single quote

For literal text with single quotes in them (Al’s Hardware), you
can do this as: ‘Al’’s Hardware’ or some products allow use of
“escape characters” (‘Al®¢’s Hardware’)

— Be careful with “magic quotes” in some products

— Magic quotes was a feature of the PHP scripting language, wherein strings are automatically escaped—special
characters are prefixed with a backslash—before being passed on. It was introduced to help newcomers write
functioning SQL commands without requiring manual escaping

Copyright Dan Brandon

Display all information for salespersons who
are not in Copenhagen or Odense: [Q10]

« SELECT *
—FROM S

—~WHERE City NOT IN
(‘Copenhagen’, ‘Odense’)

* Note that “IN” essentially requires a
one column table to look thru

Copyright Dan Brandon

Display salesperson ID’s and names for those whose
name starts with a ‘J’ and ends with ‘SEN’ and the
first character of their 2 character ID 1s ‘S’: [Q11]

« SELECT *
—FROM S
— WHERE (SName LIKE ‘J%SEN’)
— AND (SID LIKE ‘S °)
0% means zero, one or more characters
e means exactly one character
« Wildcard symbols vary with product

Copyright Dan Brandon

ANSI Wildcard Characters

Character Description Example

Matches any number of characters. It can be used asthe wh% finds what, white, and
first or last character in the character string. why, but not awhile or watch.

Matches any single alphabetic character. B Il finds ball, bell, and bill.

Matches any single character within the brackets. B[ae]ll finds ball and bell, but
not bill.

Matches any character not in the brackets. b[*ae]ll finds bill and bull, but
not ball or bell.

Matches any one of a range of characters. You must b[a-c]d finds bad, bbd, and bed.
specify the range in ascending order (A to Z, not Zto A).

Copyright Dan Brandon

Access Wildcard Characters

Character

Description

Matches any number of characters. You can use the
asterisk (*) anywhere in a character string.

Matches any single alphabetic character.

Matches any single character within the brackets.

Matches any character not in the brackets.

Matches any one of a range of characters. You must

specify the range in ascending order (Ato Z, not Z to A).

Matches any single numeric character.

Copyright Dan Brandon

Example

wh* finds what, white, and why,
but not awhile or watch.

B?Il finds ball, bell, and bill.

B[ae]ll finds ball and bell, but
not bill.

b[!ae]ll finds bill and bull, but
not ball or bell.

b[a-c]d finds bad, bbd, and
bed.

1#38 finds 103, 113, and 123.

Further Use of Expressions

A column in the output table may
consists of an arithmetic expression
with the operators +, -, *, /, *

e It Is also possible to sort the output
table on such a calculated column

 The logical expression after WHERE
may also contain arithmetic operators

Copyright Dan Brandon

Display a price list in which the products are sorted
descending according to the price of the product including a
22% sales tax: [Q12]

« SELECT PID, PName, Price * 1.22
— FROMP

— ORDER BY 3 DESC, PID ASC

» Note the use of the ‘3’ to refer to the third
output column in the ORDER BY clause

* Could also give ‘Price*1.22° a name with
AS clause

Copyright Dan Brandon

SQL Arithmetic Functions

Function

ABS
ACOS
ASIN
ATAN
ATAN2
CEIL
CEILING
COS

COT
DEGREES
DIV

EXP
FLOOR
GREATEST
LEAST

LN

Operation

Returns a value’s absolute value

Returns a value’s arc cosine

Returns a value's arc sine

Returns a value’s arc tangent

Returns the arc tangent of two values

Returns the smallest integer value that is greater than or equal to the specified number
Returns the smallest integer value that is greater than or equal to the specified number

Returns a value’s cosine

Returns a value’s cotangent

Returns the degree equivalent of a value in radians

Returns the integer result of a division operation (not the remainder, as does MOD)
Returns the value of e raised to the power of the specified number

Returns the largest integer value that is less than or equal to a value

Returns the greatest value in a list of values

Returns the smallest value in a list of values

Returns a value’s natural logarithm

Returns a value’s natural logarithm or the value’s logarithm to a specified base

Pl

POW
POWER
RADIANS
RAND
ROUND
SIGN

SIN
SQRT
SUM

TAN

TRUNCATE

SQL Arithmetic Functions (con’t)

Returns a value's natural logarithm to base 10

Returns a value’s natural logarithm to base 2

Returns the maximum value in a set of values

Returns the minimum value in a set of values

Returns the remainder (modulo) of a value divided by another number
Returns the value of pi

Returns the value of a number raised to the power of the specified number

Returns the value raised to the power of the specified number

Returns the radian equivalent of a value specified in degrees

Returns a random number

Returns the value rounded to the specified number of decimal places
Returns a value’s sign

Returns a value’s sine

Returns a value's square root

Returns the sum of a set of values

Returns a value's tangent

Returns a value truncated to the specified number of decimal places

Subqueries

 Queries can be nested, and connected
by SQL logical operators

« SELECT *
—FROM ...
—WHERE operator

* (subquery)

Copyright Dan Brandon

Subqueries (con’t)
» Subqueries are enclosed In parathesis

 Subqueries can also Iinvolve the same
tables, and If so alias names have to
be used (just like In the self join)

* Think of subqueries like nested “for
loops” 1n a program; the inner query
may be using variables from the outer

loop

Copyright Dan Brandon

Display product number and
name of products sold: [Q13]

. SELECT PID, PName
~ FROM P
~ WHERE EXISTS
_ (SELECT *
- FROM SP
- WHERE SP.PID = P.PID)

« Remember that EXIST is true if there are any
rows In the argument table

Copyright Dan Brandon

Information Processing Methods

» Joins are like combining all the data
together and then sorting thru what you
need !

 Subqueries are like the process you
would normally go thru manually to
find information in tables

Copyright Dan Brandon

Information Processing Methods
(con’t)

» One method can be much faster than
the other depending on the database
product and the problem at hand — try
both !

* One cannot always use joins in the
place of subqgueries and vice-versa !

Copyright Dan Brandon

Display product number and
name of products sold - Manually

 Look at each product in the product
table (look at P table in Access)

 For each product in that table, look
over In the SP table and see If It occurs
IN that table also

* If so, then It has been sold (by
somebody)

Copyright Dan Brandon

Find the names of salespersons

who have sold something: [Q14 a&b]
« SELECT SName

— FROM S

— WHERE SID IN [note “IN” needs a one column table]
e (SELECT DISTINCT SID
« FROM SP)

« or with a join

« SELECT DISTINCT SName
— FROM S, SP
— WHERE S.SID = SP.SID

Some queries can be expressed with joins or subqueries, which is more
efficient depends upon the size of the tables, and indexes involved

Copyright Dan Brandon

Exists and IN Methods

SELECT PID, PName
— FROM P
— WHERE EXISTS
— (SELECT *
« FROM SP
« WHERE SP.PID = P.PID)
SELECT PID, PName
— FROM P
— WHERE PID IN
— (SELECT DISTINCT PID [need a table with one column]
 FROM SP)

Note that the IN version is (should be)faster here since, the subquery
produces the same table for each row of the outer loop; but this depends

upon the optimization capability of the data base product used !
Copyright Dan Brandon

Any or All Conditions [Q15]

 Get product names for products whose price

IS greater than the price of every blouse
» SELECT DISTINCT A.PName
— FROM P A [need alias]
— WHERE A.Price > ALL
— (SELECT DISTINCT B.Price
- FROM P B
« WHERE B.PName = ‘Blouse”’)

e Can also use ANY

Copyright Dan Brandon

SQL Aggregate Functions

« SQL also has built-in functions (aggregate
functions) which can be used as output:
— SUM - sums a column
— MIN - finds minimum of column
— MAX - finds maximum of column
— AVG - calculates average value for a column
— COUNT (*) - counts rows

— COUNT (DISTINCT column-name) - counts the
number of different values in a column

Copyright Dan Brandon

SQL Aggregate Functions (con’t)

« NULL values not included In
calculations

* In Access, need to click on the
aggregate total button (the button as a
“sum” sign on 1t) to get a “total” line

on query grid |

Copyright Dan Brandon

Display the number of salespersons who have
been selling product P3, along with statistics:

SELECT COUNT (*), SUM (Qty), MAX

(Qty), MIN (Qty), AVG(Qty)
~FROM SP

— WHERE PID = ‘P3’

The output Is the single row:
—2, 600, 500, 100, 300

Copyright Dan Brandon

GROUPS (subtotals)

The SELECT statement can be altered so
that 1t works with groups of rows

The parameter GROUP BY causes the
selected rows to be grouped together
thereby outputting a table consisting of
statistical information about each group

The additional parameter HAVING is used
If the output table Is to have a subset of the
total number of groups

Copyright Dan Brandon

GROUPS (con’t)

« Remember:

—~WHERE qualifies individual
rows !

—HAVING qualifies groupings
(subtotals) !

Copyright Dan Brandon

Display a list of cities with more than one salesperson (with a
count of salespersons in that city): [Q17]

« SELECT City, COUNT (*)
— FROM S
— GROUP BY City
— HAVING COUNT (*) > 1
— ORDER BY City

 The output Is the single row:
— Copenhagen, 2

Copyright Dan Brandon

Class Exercise - Part 1

* Write the SQL for showing
the total of units that have
been sold ?

* Try In Access also (click on
sum button)

=i
Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

Q18a

 SELECT SUM(SP.Qty) AS SumOfQty
 FROM SP;

Class Exercise - Part 2

« Now what are the total sales In
dollars ? [in SQL]

 \What tables do you need ?

=i
Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

Q18

+ SELECT SUM (SP.Qty * P.Price)
_FROM SP, P
_WHERE SP.PID = P.PID

Class Exercise - Part 3

* Now, In SQL, display a
list of salesperson’s total
sales in dollars (subtotals
by salesperson 1d)

=i
Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

Q19

« SELECT SP.SID, SUM (SP.Qty * P.Price)
—FROM SP, P
— WHERE SP.PID = P.PID
— GROUP BY SP.SID

Class Exercise - Part 4

 Finally, In SQL, display a list
of salesperson’s total sales
In dollars where the total iIs
greater than $ 20,000

=i
Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

Q20

« SELECT SP.SID, SUM (SP.Qty * P.Price)
—FROM SP, P
— WHERE SP.PID = P.PID
— GROUP BY SP.SID
— HAVING SUM (SP.Qty * P.Price) > 20000

Which salesperson has sold some
of all products?

Relational algebra division operation

T =DIVIDE SP BY P [PID] ;

Not directly implemented in most SQL products
The result (quotient) is only S5

"he Interpretation of division is: Which sets of
salesman rows (M=1) of the dividend (SP) have
the attributes of the divisor (ie which S’s in SP
are related to all rows in the P table)

Copyright Dan Brandon

Relational Algebra Division

Subject
Course

* - Dotcbose

* Which unique row(s) in the dividend have all of the
attributes of the divisor

 Note that this Is the inverse of multiplication: The

result (quotient) multiplied by the divisor plus the
remainder yield the dividend

Copyright Dan Brandon

In SQL, which salesperson has

sold some of all products?

« SELECT DISTINCT SP.SID
« FROM SP

« WHERE NOT EXISTS
— (SELECT *
— FROMP
— WHERE NOT EXISTS
« (SELECT *
- FROM SP AS X
« WHERE X.SID = SP.SID AND X.PID = P.PID));

“Where there does not exists a product he has not sold”

Copyright Dan Brandon

SQL Query Approach

1. Understand problem !
2. What tables are involved ?

3. If more than one table (or comparing within the
same table), then what operation Is needed
between the tables:

— Join (inner or outer), Union, Intersection, Difference
— Sub-queries

4. \What are the selection criterion ?

5. Any grouping or group selection (“having”) ?
5. What columns or totals need to be projected ?
6. Any sorting ?

Copyright Dan Brandon

References

* Introductory:
— SQL for DUMMIES; Taylor,A; 1-56884-336-4

— The Essence of SQL: A Guide to Learning
Most of SQL in the Least Amount of Time;
Rozenshtein; 0-9649812-1-1

« Advanced:
— SQL for SMARTIES; Celko, J.; 1-55860-323-9

Copyright Dan Brandon

Courses v Search O Khan Academy

Computing

Computer programming

0 Intro to SQL: Querying and managing data

SQL basics Modifying databases with SQL

More advanced SQL queries Further learning in SQL

Relational queries in SQL

Copyright Dan Brandon

https://www.khanacademy.org/computing/computer-programming/sql/sql-basics/v/s-q-l-or-sequel

Homework

» Textbook — Chapter 7

« Access model for SOC queries

— SOC.mdb - download from course web site-
see next slide

e Do “save as’ first

 Using the Salesperson, Order, Customer Tables,
build the SQL for the following queries:

— Show standard SQL for each query
« Submit Word file

— Set up queries in Access

o Submit Access file
Copyright Dan Brandon

SOC E-R Diagram

Copyright Dan Brandon

SOC Access Model

¥ MName ¥ Mumber ¥ Name

City - CustMame Quota

IndustryType Salespersonia Salary

Amount

Copyright Dan Brandon

S (Salesperson Table)

Haker

Jones
K.obad
durphy

Fenith

Copyright Dan Brandon

C (Customer Table)

fiame Lty | ndustryType
Ahemathi Constructioniillhg i
Amalgamated nousing - Memphis
Manchester Lumber — Manchester F

TGty Bulders Memptis &

O (Order Table)
ustiame

L Abemathy Construction alal
200 Abernathy Canstruction Jones 1500
A0 Manchester Lumber — Abe 44

400 Amalgamated Houging Abe pallll
A0 Abernathy Construction Murphy BO00
B00 Tr-City Builders Abgl 70
{00 Manchester Lumber — Jones 1400

Copyright Dan Brandon

SQL Homework Queries

1. Show the salaries of all salespeople.
2. Show the salaries of all salespeople but omit duplicates.
3. Show the names of all salespeople under 30 percent of quota.

4. Show the names of all salespeople who have an order with Abernathy
Construction.

5. Show the names of all salespeople who earn more than $49,999 and less
than 100,000.

6. Show the names of all salespeople with PercentOfQuota greater than 49
and less than 60. Use the BETWEEN keyword.

7. Show the names of all salespeople with PercentOf Quota greater than 49
and less than 60. Use the LIKE keyword.

8. Show the names of customers who are located in a City ending with S.

9. Show the names and salary of all salespeople who do not have an order
with Abernathy Construction, in ascending order of salary.

Copyright Dan Brandon

SQL Homework Queries (con’t)

10.
11.
12.
IS
14,

15.

Compute the number of orders.

Compute the number of different customers who have an order.
Compute the average percent of quota for salespeople.

Show the name of the salesperson with highest percent of quota.
Compute the number of orders for each salesperson.

Compute the number of orders for each salesperson, considering only

orders for an amount exceeding 500.

Copyright Dan Brandon

