
SQL

SQL
• Categories of SQL commands/functions

– Data definition language (DDL)

– Data manipulation language (DML)

– Transaction control language (TCL)

– Data control (security) language (DCL)

• Nonprocedural language with basic command

vocabulary set of less than 100 words

• Differences in RDBMS Vendors dialects and

capabilities

Learning SQL

• SQL requires study plus trial/error

• Understanding relational algebra provides a

deeper understanding of SQL

• Going thru this lesson one time and/or reading

the corresponding textbook chapter one time will

likely not be enough

• You need to practice with a lot of queries to gain

a solid understanding of SQL

Copyright Dan Brandon

Relational Algebra

• Relational Algebra is a procedural way to perform

database queries

• SQL is non-procedural and based upon the mathematics

of relational and predicate calculus

Copyright Dan Brandon

Copyright Dan Brandon

Case Study Tables

[salesperson, product, sales]

• S (SID, SName, City)

• P (PID, PName, Size, Price)

• SP (SID, PID, Qty)

Keys ?

Copyright Dan Brandon

Salesperson Table (S)

SID Sname City
S1 Peterson Aarhus

S2 Olsen Copenhagen

S4 Hansen Odense

S5 Jensen Copenhagen

Copyright Dan Brandon

Product Table (P)

PID PName Size Price
P1 Shirt 6 50

P3 Trousers 5 90

P4 Socks 7 20

P5 Blouse 6 50

P8 Blouse 8 60

Copyright Dan Brandon

SP Table (Intersection Table)

SID PID Qty
S2 P1 200

S2 P3 100

S4 P5 200

S4 P8 100

S5 P1 50

S5 P3 500

S5 P4 800

S5 P5 500

S5 P8 100

Access Relationship Grid

Copyright Dan Brandon

Download this Access file (SP) form the online syllabus.

SP Access File

Copyright Dan Brandon

Copyright Dan Brandon

SQL Data Definition Language

• Create Table
– Columns (names, allow nulls, and data types)

– Primary Key

– Foreign Key

– Indexes

– Column Constraints

– Table Constraints

Copyright Dan Brandon

S (SID, SName, City)

• CREATE TABLE S

– (SID CHAR(2) NOT NULL,

– SName VARCHAR (30),

– City VARCHAR (15),

– PRIMARY KEY (SID))

Copyright Dan Brandon

S (SID, SName, City)

• Alternative forms

– CREATE TABLE S

• (SID CHAR(2) Primary Key,

• SName VARCHAR (30),

• City VARCHAR (15))

– CREATE TABLE S

• (SID CHAR(2) NOT NULL,

• SName VARCHAR (30),

• City VARCHAR (15))

• ALTER TABLE S ADD PRIMARY KEY (SID))

• Can also add other table features: index, unique
index, constraints, foreign key, …

Copyright Dan Brandon

P (PID, PName, Size, Price)

• CREATE TABLE P

– (PID CHAR(2) NOT NULL,

– PName VARCHAR (20),

– Size SMALLINT,

– Price DECIMAL (5.2) NOT NULL,

– PRIMARY KEY (PID))

Copyright Dan Brandon

SP (SID, PID, Qty)

• CREATE TABLE SP

– (SID CHAR(2) NOT NULL,

– PID CHAR(2) NOT NULL,

– Qty INTEGER,

– PRIMARY KEY (SID, PID),

– FOREIGN KEY (SID) REFERENCES S,

– FOREIGN KEY (PID) REFERENCES P)

• May also be able to add referential integrity

actions, discussed later

Copyright Dan Brandon

Basic Data Types
(specific RDBMS may have mode/different types)

• CHARACTER(n) or CHAR (n) - fixed length string of n

characters (ie STATE)

• CHARACTER VARYING or VARCHAR(n) - varying

length string of up to n characters

• MEMO (text area)

• BIT(n) & VARBIT(n) & Yes/No

• INTEGER, SMALLINT, TINYINT

• FLOAT or REAL & DOUBLE

• DECIMAL(p,q) & NUMERIC (p,q) - assumed decimal

point q digits from the right (0 <= q <= p)

• DATE, TIME, and TimeStamp (date/time)

• BLOB (Binary Large Object)

Data Types (con’t)

Copyright Dan Brandon

Data Types (con’t)

Copyright Dan Brandon

Copyright Dan Brandon

NULL
• NULL values in tables, means unknown value

• NULL table results, means empty table

• Installation defined implementation

• Area of incompatibility between RDBMS

• Operations: IS NULL or IS NOT NULL

• Ignored in functions (ave, max, ...)

• Arithmetic. If A or B or BOTH are NULL then all these expressions

evaluate to NULL: A+B, A-B, A*B, A/B

• NULLS are equal to each other

• Logic. If A or B or BOTH are NULL then all these expressions use the

unknown truth table (next slide): A=B, A NOT = B, A>B, A<B,

A>=B, A<=B; Example: “A<>3” is not true for NULL A

http://3.bp.blogspot.com/-gIbY-Tqv34I/Tdm2v0h_brI/AAAAAAAAAkw/l7_ZNQQ0HiU/s1600/null.gif

Truth Table with Unknowns

Copyright Dan Brandon

Copyright Dan Brandon

Retrieving Data via SQL

• SELECT columns-in-output-tables

– FROM input-tables

– WHERE logical-expression

– ORDER BY columns -in-output-tables

• Output is always a table

– may be a table with only one row and/or

column (“singleton”)

– may be a NULL table

Access “Query by Example”

• Query-By-Example (QBE) is also non-

procedural

• There is no standard for QBE

• Not all queries can be done in QBE

• Perform an Access QBE to answer this

question (save as “Q1”):

– “In which cities are salespersons

located ?”
Copyright Dan Brandon

Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

Access Query Grid
[Query by Example]

Copyright Dan Brandon

Access SQL View

Copyright Dan Brandon

Access SQL View

Copyright Dan Brandon

Copyright Dan Brandon

Relational Algebra PROJECTION
(“project” certain columns)

• SELECT DISTINCT City

–FROM S

–ORDER BY City

• DISTINCT removes redundant columns*

• “In which cities are salespersons located ?”

• * In Access, select “View” then

“Properties” to set query properties; select

“unique values” to “yes”

Copyright Dan Brandon

Q1

City

Aarhus

Copenhagen

Odense

Q1 (con’t)

Copyright Dan Brandon

Copyright Dan Brandon

Distinct & Distinctrow

• In Access:

– DISTINCT - Shows rows if selected

columns are unique

– DISTINCTROW - Shows rows if

entire row from underlying table(s)

are unique

Access Exercise

• Perform an Access query via the

query grid to answer this question:

– “List all info for salespersons in

Copenhagen”

• What is the SQL for this query ?

Copyright Dan Brandon

Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

Copyright Dan Brandon

Relational Algebra SELECTION (WHERE)

(“select” certain rows)

• SELECT *

– FROM S

– WHERE City = ‘Copenhagen’

– ORDER BY SName DESC

• “List info for salespersons in Copenhagen”

• * selects all columns

• DESC sorts in descending order

Copyright Dan Brandon

Q2 [Q2a, SQL design alternative (without

checking any “show” boxes, “show all” in

properties)]

SID Sname City

S2 Olsen Copenhagen

S5 Jensen Copenhagen

Parameter Query

• Which salespersons live in ____________ ?

• Standard SQL:

– SELECT S.SID, S.SName, S.City

– FROM S

– WHERE (S.City=?);

Copyright Dan Brandon

Parameter Query in Access (Q2b)

Copyright Dan Brandon

Access Exercise

• Perform an Access query via the

query grid to answer this question:

– Which salespersons (SID’s) are either in

Copenhagen or have sold some P8 ?

• What is the SQL for this query ?

Copyright Dan Brandon

Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

Copyright Dan Brandon

UNION [Q3, via Join]
[Q3a, SQL Union, no Access QBE design] (members in either set)

• Which salespersons (SID’s) are either in

Copenhagen or have sold some P8 ?

• SELECT SID

– FROM S

– WHERE City = ‘Copenhagen’

– UNION

– SELECT SID

– FROM SP WHERE PID = ‘P8’

• The result is the table with the column containing

S2, S4, S5 (the UNION removes duplicate rows,

there is a UNION ALL to retain any duplicates)

Copyright Dan Brandon

• Access, like many RDBMS, cannot do

Unions, Intersection, and Differences via

their GUI QBE

• In fact, Access (and many others) cannot do

Intersection or Difference at all

• For Query Optimization (necessary for

Enterprise Applications) needs to be done in

SQL not QBE

Access Exercise

• Perform an Access query via the

query grid to answer this question:

– Which salespersons (SID’s) are both in

Copenhagen and have sold some P8

• What is the SQL for this query ?

Copyright Dan Brandon

Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

Copyright Dan Brandon

INTERSECTION [Q4]
[no Access Intersection, need to use join]

(members in both sets)

• Which salespersons (SID’s) are both in

Copenhagen and have sold some P8

• SELECT SID

– FROM S

– WHERE City = ‘Copenhagen’

– INTERSECT

– SELECT SID

– FROM SP

– WHERE PID = ‘P8’

SQL Join

• The “join process” (inner join) involves

multiplying two (or more) tables together

and then removing the rows that do not

meet a “join criteria”

• Multiplying two tables together involves

taking all possible combinations of the rows

from the first table with the rows from the

second table

Copyright Dan Brandon

Product of Two Tables

Copyright Dan Brandon

Copyright Dan Brandon

Inner Join

• SELECT DISTINCT S.SID

• FROM S INNER JOIN SP ON S.SID =

SP.SID

• The join criteria is “S.SID = SP.SID” which

is the typical join criteria (matching the

primary key of the first table with the

corresponding foreign key in the second

table)

Union via Join

• SELECT DISTINCT S.SID

• FROM S INNER JOIN SP ON S.SID = SP.SID

• WHERE S.City = ‘Copenhagen’ OR SP.PID =

‘P8’

Copyright Dan Brandon

Copyright Dan Brandon

Intersection via Join

• SELECT DISTINCT S.SID

• FROM S INNER JOIN SP ON S.SID = SP.SID

• WHERE S.City = ‘Copenhagen’ AND SP.PID

= ‘P8’;

Access Exercise

• Perform an Access query via the

query grid to answer this question:
– Display the salespersons (SID’s) in

Copenhagen who have not sold any P8

• What is the SQL for this query ?

Copyright Dan Brandon

Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

Copyright Dan Brandon

DIFFERENCE [Q5, no Access difference]

(EXCEPT or MINUS, varies by vendor)

• Display the salespersons (SID’s) in

Copenhagen who have not sold any P8

• SELECT SID

– FROM S

– WHERE City = ‘Copenhagen’

– EXCEPT

– SELECT SID

– FROM SP

– WHERE PID = ‘P8’

Need to

use sub

queries

in

Access !

Copyright Dan Brandon

What’s wrong with this; why does

this not produce a difference ?

• SELECT DISTINCT S.SID

• FROM S INNER JOIN SP ON S.SID = SP.SID

• WHERE S.City=‘Copenhagen’ AND SP.PID

not = "P8"; use “<>” in Access

Copyright Dan Brandon

T = T1 - T2 = [S2]

• T1 (in Copenhagen)

–S2

–S5

• T2 (sold P8)

–S4

–S5

The join will yield 14 rows (two for S [Copenhagen] and seven

for SP [not P8]), and the projection of SID will yield two rows

for S2 and S5, because S5 also has a row(s) in SP

that are for products other that P8 ! But only S2 is the answer .

Copyright Dan Brandon

SQL/92 “Standard” Join

• TABLE_REF NATURAL {JOIN_TYPE} JOIN TABLE_REF

– Where:
• TABLE_REF is the name (or alias) of a table

• {JOIN_TYPE} (INNER is the default):

– INNER

– LEFT {OUTER}

– RIGHT {OUTER}

– FULL {OUTER} If the join condition is the equality

between the columns in common, the

join is called an equijoin.

If one of the two common columns in an

equijoin is eliminated, then it is called a

natural join (the most common kind of

join which removes the redundancy)

Copyright Dan Brandon

OR

• TABLE_REF {JOIN_TYPE} JOIN TABLE_REF
ON EXP

– Where:

• TABLE_REF is the name (or alias) of a table

• EXP is an expression

• {JOIN_TYPE} is (INNER is the default):

– INNER

– LEFT {OUTER}

– RIGHT {OUTER}

– FULL {OUTER}

• Alternative form (“legacy SQL”):

– TABLE_REF, TABLE_REF WHERE EXP

Copyright Dan Brandon

OR

• TABLE_REF {JOIN_TYPE} JOIN

TABLE_REF USING COLS

– Where:

• TABLE_REF is the name (or alias) of a table

• COLS is a column list (same names in both tables)

• {JOIN_TYPE} is (INNER is the default):

– INNER

– LEFT {OUTER}

– RIGHT {OUTER}

– FULL {OUTER}

Copyright Dan Brandon

Acceptable Forms of the Join

• SELECT SName, Qty

– FROM S NATURAL JOIN SP [PK and FK match]

• SELECT SName, Qty

– FROM S JOIN SP ON S.SID = SP.SID

– Or “legacy form”:

• SELECT SName, QTY

– FROM S, SP

» WHERE S.SID = SP.SID

• SELECT SName, Qty

– FROM S JOIN SP USING (SID) [called ‘SID’ in both tables]

Copyright Dan Brandon

SQL JOIN Support

• Some (currently most) products only
support “legacy form”

• Some products (Access) do not support (or
partially support) legacy form

• Some products support both (to some
degree)

• Inner joins cannot be nested within outer
joins, but outer joins can be nested within
inner joins

Copyright Dan Brandon

JOIN - “Show names of

salespersons with product sold info”

• SELECT SName, S.SID, PID, Qty

– FROM S, SP

– WHERE S.SID = SP.SID

• Common column is SID; if they have the
same name then specify the table:

– TableName.ColumnName

• Access SQL syntax:

– FROM S INNER JOIN SP ON S.SID=SP.SID

Copyright Dan Brandon

Q6

SName SID PID Qty
Olsen S2 P1 200

Olsen S2 P3 100

Hansen S4 P5 200

Hansen S4 P8 100

Jensen S5 P1 50

Jensen S5 P3 500

Jensen S5 P4 800

Jensen S5 P5 500

Jensen S5 P8 100

Copyright Dan Brandon

Include info for all salespersons

• SELECT SName, S.SID, PID, Qty
– FROM S LEFT OUTER JOIN SP

– WHERE S.SID = SP.SID

• OR:

– SELECT SName, S.SID, PID, Qty

– FROM S LEFT OUTER JOIN SP

– ON S.SID = SP.SID

• Q6a

Access Outer Join in QBE
[right click join arrow]

Copyright Dan Brandon

Copyright Dan Brandon

Other Outer Join SQL Syntax

• In Transact-SQL (SQLServer):

– SELECT SName, S.SID, PID, Qty

– FROM S LEFT OUTER JOIN SP

– WHERE S.SID *= SP.SID

• In PL/SQL (Oracle):

– SELECT SName, S.SID, PID, Qty

– FROM S LEFT OUTER JOIN SP

– WHERE S.SID = SP.SID+

Copyright Dan Brandon

SQL Query Approach
[thus far]

• 1. Understand problem

• 2. What tables are involved ?

• 3. If more than one table, then what operation is

need between the tables:

– Join (inner or outer), Union, Intersection, Difference

• 4. What are the selection criterion ?

• 5. What columns need to be projected ?

• 6. Any sorting ?

Copyright Dan Brandon

Class Exercise

• Write the SQL to display the

product names (Pname) and

quantities (Qty) of products

sold for SID ‘s

• Check your answer in Access

Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

Q7

• SELECT SID, PName, Qty

–FROM P, SP

–WHERE P.PID = SP.PID

Include Salesperson names:

• SELECT SID, SName, PName,

Qty

– FROM P, SP, S

– WHERE P.PID = SP.PID

– AND SP.SID = S.SID

• When N tables are joined, N-1 join

criterion are needed !

Copyright Dan Brandon

Cross Join

• A “cross join” (full outer join) is

the same as the Cartesian Product

in relational algebra (the

combination of all rows of the first

table with all rows of the second

table):

– SELECT SID, PID

– FROM S, P

Copyright Dan Brandon

Copyright Dan Brandon

Self Joins

• Tables may be joined with themselves

• Need to give the table(s) alias names

• Display a list of products that can be

supplied in a size that is two sizes larger

(product names have to be the same)

• What tables ae involved?

• How would you do this manually ??

– See next slide…

Copyright Dan Brandon

Product Table (P)

PID PName Size Price
P1 Shirt 6 50

P3 Trousers 5 90

P4 Socks 7 20

P5 Blouse 6 50

P8 Blouse 8 60

Copyright Dan Brandon

Display a list of products that can be supplied

in a size that is two sizes larger…

• Two ways:

– Multiply the tables together to find all

combinations of one product matched with

another product; then strike out all the rows that

do not match the join criteria

– For each row

• Look at all the other rows that match the

criteria (subqueries - discussed later)

Copyright Dan Brandon

SQL Self Join

• SELECT X.PID

– FROM P X, P Y (P as X, P as Y)

– WHERE (X.PName = Y.PName)

AND (X.Size + 2 = Y.SIZE)

• The answer is the single value P5

[Q8]

Copyright Dan Brandon

Self Join Applications

• Self Joins are also common in

auditing queries:

–Find missing (skipped) control

numbers (ie invoice numbers)

–Find duplicating fields (ie

duplicate payments, etc.)

Copyright Dan Brandon

SQL Logical Operators

Operator Description Negation

= Equal to Yes

< Less than Yes

<= Less than or equal to No

> Greater than Yes

>= Greater than or equal to No

OR logical expression is true if at least one of

the arguments of OR is a true expression No

AND logical expression is true if both argumnts

are true expressions No

(not)

Can also use <> or != instead of “not =“

Copyright Dan Brandon

SQL Logical Operators

Operator Description Negation

BETWEEN Expression is true if the operand lies within a

spepcified interval, including the limits Yes

IN Expression is true if the operand is included

in a stated table with one column; this

operator corresponds to the set operator ‘is a

member of’

Yes

EXISTS Expression is true if there are rows in the

table serving as the argument; corresponds to

the set existential operator

Yes

LIKE Expression is true if a character column

contains certain selected combinations of

columns

Yes

Copyright Dan Brandon

Display product numbers of blouses in

the price range of $30 to $60: [Q9]

• SELECT PID

– FROM P

– WHERE (PName = ‘Blouse’) AND

(Price BETWEEN 30 AND 60)

• The output is the table with two rows: P5 and P8

• Output would include both $30 and $60 blouses

• Note that Blouse is in quotes and 30 (or 60) is not

Copyright Dan Brandon

Quotes
• Standard SQL uses the single quote for literal text strings

• Access uses the double quote for text strings

• Some products can use either

• For standard SQL, only use the double quotes for the AS clause

with keywords as titles:

– Select Name as “select” from …

• With ODBC (or JDBC) and even if you are using ODBC for an

Access File, use the single quote

• For literal text with single quotes in them (Al’s Hardware), you

can do this as: ‘Al’’s Hardware’ or some products allow use of

“escape characters” (‘Alesc’s Hardware’)

– Be careful with “magic quotes” in some products
– Magic quotes was a feature of the PHP scripting language, wherein strings are automatically escaped—special

characters are prefixed with a backslash—before being passed on. It was introduced to help newcomers write

functioning SQL commands without requiring manual escaping

Copyright Dan Brandon

Display all information for salespersons who

are not in Copenhagen or Odense: [Q10]

• SELECT *

– FROM S

– WHERE City NOT IN

(‘Copenhagen’, ‘Odense’)

• Note that “IN” essentially requires a

one column table to look thru

Copyright Dan Brandon

Display salesperson ID’s and names for those whose

name starts with a ‘J’ and ends with ‘SEN’ and the

first character of their 2 character ID is ‘S’: [Q11]

• SELECT *

– FROM S

– WHERE (SName LIKE ‘J%SEN’)

– AND (SID LIKE ‘S_’)

• % means zero, one or more characters

• _ means exactly one character

• Wildcard symbols vary with product

ANSI Wildcard Characters

Copyright Dan Brandon

Access Wildcard Characters

Copyright Dan Brandon

Copyright Dan Brandon

Further Use of Expressions

• A column in the output table may

consists of an arithmetic expression

with the operators +, -, *, /, ^

• It is also possible to sort the output

table on such a calculated column

• The logical expression after WHERE

may also contain arithmetic operators

Copyright Dan Brandon

Display a price list in which the products are sorted

descending according to the price of the product including a

22% sales tax: [Q12]

• SELECT PID, PName, Price * 1.22

– FROM P

– ORDER BY 3 DESC, PID ASC

• Note the use of the ‘3’ to refer to the third

output column in the ORDER BY clause

• Could also give ‘Price*1.22’ a name with

AS clause

SQL Arithmetic Functions

Copyright Dan Brandon

SQL Arithmetic Functions (con’t)

Copyright Dan Brandon

Copyright Dan Brandon

Subqueries

• Queries can be nested, and connected

by SQL logical operators

• SELECT *

– FROM ...

– WHERE operator

• (subquery)

Copyright Dan Brandon

Subqueries (con’t)

• Subqueries are enclosed in parathesis

• Subqueries can also involve the same

tables, and if so alias names have to

be used (just like in the self join)

• Think of subqueries like nested “for

loops” in a program; the inner query

may be using variables from the outer

loop

Copyright Dan Brandon

Display product number and

name of products sold: [Q13]

• SELECT PID, PName

– FROM P

– WHERE EXISTS

– (SELECT *

• FROM SP

• WHERE SP.PID = P.PID)

• Remember that EXIST is true if there are any

rows in the argument table

Copyright Dan Brandon

Information Processing Methods

• Joins are like combining all the data

together and then sorting thru what you

need !

• Subqueries are like the process you

would normally go thru manually to

find information in tables

Copyright Dan Brandon

Information Processing Methods

(con’t)

• One method can be much faster than

the other depending on the database

product and the problem at hand – try

both !

• One cannot always use joins in the

place of subqueries and vice-versa !

Copyright Dan Brandon

Display product number and

name of products sold - Manually

• Look at each product in the product

table (look at P table in Access)

• For each product in that table, look

over in the SP table and see if it occurs

in that table also

• If so, then it has been sold (by

somebody)

Copyright Dan Brandon

Find the names of salespersons

who have sold something: [Q14 a&b]

• SELECT SName

– FROM S

– WHERE SID IN [note “IN” needs a one column table]

• (SELECT DISTINCT SID

• FROM SP)

• or with a join

• SELECT DISTINCT SName

– FROM S, SP

– WHERE S.SID = SP.SID

• Some queries can be expressed with joins or subqueries, which is more

efficient depends upon the size of the tables, and indexes involved

Copyright Dan Brandon

Exists and IN Methods

• SELECT PID, PName

– FROM P

– WHERE EXISTS

– (SELECT *

• FROM SP

• WHERE SP.PID = P.PID)

• SELECT PID, PName

– FROM P

– WHERE PID IN

– (SELECT DISTINCT PID [need a table with one column]

• FROM SP)

• Note that the IN version is (should be)faster here since, the subquery

produces the same table for each row of the outer loop; but this depends

upon the optimization capability of the data base product used !

Copyright Dan Brandon

Any or All Conditions [Q15]

• Get product names for products whose price

is greater than the price of every blouse
• SELECT DISTINCT A.PName

– FROM P A [need alias]

– WHERE A.Price > ALL

– (SELECT DISTINCT B.Price

• FROM P B

• WHERE B.PName = ‘Blouse’)

• Can also use ANY

Copyright Dan Brandon

SQL Aggregate Functions

• SQL also has built-in functions (aggregate

functions) which can be used as output:

– SUM - sums a column

– MIN - finds minimum of column

– MAX - finds maximum of column

– AVG - calculates average value for a column

– COUNT (*) - counts rows

– COUNT (DISTINCT column-name) - counts the

number of different values in a column

Copyright Dan Brandon

SQL Aggregate Functions (con’t)

• NULL values not included in

calculations

• In Access, need to click on the

aggregate total button (the button as a

“sum” sign on it) to get a “total” line

on query grid

Copyright Dan Brandon

Display the number of salespersons who have

been selling product P3, along with statistics:

• SELECT COUNT (*), SUM (Qty), MAX
(Qty), MIN (Qty), AVG(Qty)

– FROM SP

– WHERE PID = ‘P3’

• The output is the single row:

– 2, 600, 500, 100, 300

Copyright Dan Brandon

GROUPS (subtotals)

• The SELECT statement can be altered so

that it works with groups of rows

• The parameter GROUP BY causes the

selected rows to be grouped together

thereby outputting a table consisting of

statistical information about each group

• The additional parameter HAVING is used

if the output table is to have a subset of the

total number of groups

Copyright Dan Brandon

GROUPS (con’t)

• Remember:

–WHERE qualifies individual

rows !

–HAVING qualifies groupings

(subtotals) !

Copyright Dan Brandon

Display a list of cities with more than one salesperson (with a

count of salespersons in that city): [Q17]

• SELECT City, COUNT (*)

– FROM S

– GROUP BY City

– HAVING COUNT (*) > 1

– ORDER BY City

• The output is the single row:

– Copenhagen, 2

Class Exercise - Part 1

• Write the SQL for showing

the total of units that have

been sold ?

• Try in Access also (click on

sum button)

Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

Q18a

• SELECT SUM(SP.Qty) AS SumOfQty

• FROM SP;

Class Exercise - Part 2

• Now what are the total sales in

dollars ? [in SQL]

• What tables do you need ?

Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

Q18

• SELECT SUM (SP.Qty * P.Price)

– FROM SP, P

– WHERE SP.PID = P.PID

Class Exercise - Part 3

• Now, in SQL, display a

list of salesperson’s total

sales in dollars (subtotals

by salesperson id)

Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

Q19

• SELECT SP.SID, SUM (SP.Qty * P.Price)

– FROM SP, P

– WHERE SP.PID = P.PID

– GROUP BY SP.SID

Class Exercise - Part 4

• Finally, in SQL, display a list

of salesperson’s total sales

in dollars where the total is

greater than $ 20,000

Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

Q20
• SELECT SP.SID, SUM (SP.Qty * P.Price)

– FROM SP, P

– WHERE SP.PID = P.PID

– GROUP BY SP.SID

– HAVING SUM (SP.Qty * P.Price) > 20000

Copyright Dan Brandon

Which salesperson has sold some

of all products?

• Relational algebra division operation

• T = DIVIDE SP BY P [PID] ;

• Not directly implemented in most SQL products

• The result (quotient) is only S5

• The interpretation of division is: Which sets of
salesman rows (M=1) of the dividend (SP) have
the attributes of the divisor (ie which S’s in SP
are related to all rows in the P table)

Relational Algebra Division

• Which unique row(s) in the dividend have all of the

attributes of the divisor

• Note that this is the inverse of multiplication: The

result (quotient) multiplied by the divisor plus the

remainder yield the dividend

Copyright Dan Brandon

Copyright Dan Brandon

In SQL, which salesperson has

sold some of all products?
• SELECT DISTINCT SP.SID

• FROM SP

• WHERE NOT EXISTS

– (SELECT *

– FROM P

– WHERE NOT EXISTS

• (SELECT *

• FROM SP AS X

• WHERE X.SID = SP.SID AND X.PID = P.PID));

“Where there does not exists a product he has not sold”

Copyright Dan Brandon

SQL Query Approach

• 1. Understand problem !

• 2. What tables are involved ?

• 3. If more than one table (or comparing within the
same table), then what operation is needed
between the tables:

– Join (inner or outer), Union, Intersection, Difference

– Sub-queries

• 4. What are the selection criterion ?

• 5. Any grouping or group selection (“having”) ?

• 5. What columns or totals need to be projected ?

• 6. Any sorting ?

Copyright Dan Brandon

References
• Introductory:

– SQL for DUMMIES; Taylor,A; 1-56884-336-4

– The Essence of SQL: A Guide to Learning

Most of SQL in the Least Amount of Time;

Rozenshtein; 0-9649812-1-1

• Advanced:

– SQL for SMARTIES; Celko, J.; 1-55860-323-9

Copyright Dan Brandon

https://www.khanacademy.org/computing/computer-programming/sql/sql-basics/v/s-q-l-or-sequel

Copyright Dan Brandon

Homework
• Textbook – Chapter 7

• Access model for SOC queries

– SOC.mdb - download from course web site-
see next slide

• Do “save as” first

• Using the Salesperson, Order, Customer Tables,
build the SQL for the following queries:

– Show standard SQL for each query
• Submit Word file

– Set up queries in Access
• Submit Access file

Copyright Dan Brandon

SOC E-R Diagram

SOC Access Model

Copyright Dan Brandon

Copyright Dan Brandon

S (Salesperson Table)

Copyright Dan Brandon

C (Customer Table)

Copyright Dan Brandon

O (Order Table)

Copyright Dan Brandon

SQL Homework Queries

• 1. Show the salaries of all salespeople.

• 2. Show the salaries of all salespeople but omit duplicates.

• 3. Show the names of all salespeople under 30 percent of quota.

• 4. Show the names of all salespeople who have an order with Abernathy
Construction.

• 5. Show the names of all salespeople who earn more than $49,999 and less
than 100,000.

• 6. Show the names of all salespeople with PercentOfQuota greater than 49
and less than 60. Use the BETWEEN keyword.

• 7. Show the names of all salespeople with PercentOf Quota greater than 49
and less than 60. Use the LIKE keyword.

• 8. Show the names of customers who are located in a City ending with S.

• 9. Show the names and salary of all salespeople who do not have an order
with Abernathy Construction, in ascending order of salary.

Copyright Dan Brandon

SQL Homework Queries (con’t)

• 10. Compute the number of orders.

• 11. Compute the number of different customers who have an order.

• 12. Compute the average percent of quota for salespeople.

• 13. Show the name of the salesperson with highest percent of quota.

• 14. Compute the number of orders for each salesperson.

• 15. Compute the number of orders for each salesperson, considering only
orders for an amount exceeding 500.

