
Normalization

Functional Dependencies

• Functional Dependency and Normalization were
used as the primary relational database design
process before E-R diagrams came about

• Functional dependency is a relationship between
or among attributes

• Given two attributes X and Y, Y is functionally
dependent upon X if the value of X determines the
value of Y; X is called a determinant

• For example (when students have one major),
major is functionally dependent upon StudentId,
since knowing StudentId uniquely defines Major

Functional Dependencies (con’t)

• Written as:

– StudentId --> Major

• If StudentId determines Major, then a

particular value of StudentId will be paired (

with only one value of Major; the inverse is

generally not true (a Major will be paired

with many StudentId’s)

Groups of Attributes

• Functional dependency can involve multiple

attributes

• In the table: (SID, Class, Grade)

• (SID, Class) --> Grade

• The combination of SID and Class uniquely

determine the Grade

Groups of Attributes (con’t)

• If X --> (Y , Z) then it is true that

– X --> Y

– X --> Z

• If (X, Y) --> Z than it is not true that

– X --> Y

– X --> Z

– Y --> Z

Key (mathematically)

• A group of one or more attributes that uniquely
identifies a row

• In the relation:

– STUDENT (StudentId, Major, Name, Address,...)

– StudentId is a key

• In the relation:

– GRADE (StudentId, Course, Grade)

– (StudentId, Course) is the key [assuming a student only
completes the same course once, or only the last taking
of the course is retained in the database]

Unique Key

• The notion of key described on the previous slide

is the mathematical term

• In practice this is usually called a unique key

• There may be other keys that are not unique (and

these could be used as indexes)

• There may be more than one unique key

(candidate keys), but only one is the main table

key (or primary key)

Primary Key

• In an employee table, the primary key would probably be
employeeNumber; another unique key would be social
security number (a unique index would probably be set up
on social security number to avoid duplicates)

• A table can only have one “primary key”

• A non-unique key may be “name”

• In some terminology the word primary has to do with the
primary physical organization of the records

• Usually the table’s primary organization (hashed or b-tree
data structure) is consistent with the main unique key

Foreign Key

• A Foreign Key in one table is a value that is the

primary (main) key of another table

• A table can have none, one, or many foreign keys

• The value of Isbn in the COPY table is a foreign

key, since the value of Isbn is the primary key in

the TITLE table

• The value of StudentId in the COPY table is a

foreign key, since the value of StudentId is the

primary key of the STUDENT table

COPY Table [ISBN/Copy # is PK, Student & ISBN are FK’s]

Title CopyNumber Student Due

Date
Isbn-T1 1 null null

Isbn-T1 2 SId-S1 4/1/96

Isbn-T1 3 SId-S2 5/2/96

Isbn-T2 1 null null

Isbn-T2 2 null null

Isbn-T3 1 SId-S1 3/27/96

Isbn-T3 2 null null

Primary Keys and Determinants

• Primary Key and Determinant are not

necessarily the same in a table

• A determinant of a functional dependency

may or may not be unique to the table

• If A--> B where both A and B are in the

same table, we still do not know whether A

is unique in that table

Primary Keys and Determinants (con’t)

• Consider the table

– ACTIVITY (StudentId, Activity, Fee)

• The primary key is the group:

– (StudentId, Activity)

– since students can have multiple
activities, and an activity will typically
have many students

• However, Activity is the determinant
of Fee (assuming students all pay the
same for the same activity)

Normalization
• There are many ways to model a real world

situation with a relational model (involving
multiple tables)

• Some models are better in others in that
they minimize redundant data or are not
subject to inconsistencies upon maintenance
(“anomalies”) (insertion, modification or
deletion of information)

• Normalization is the process of
restructuring a set of tables into a more
consistent model

SERVICE Database

• Consider the relation (table):

– SERVICE (Customer, Service, Charge)

• Customer is the unique name of someone to whom
service is provided; a customer may have more
than one service and a service may be provided to
more than one customer

• Service is the unique name for a type of service,
that is regularly scheduled

• Charge is what the customer pays for the service,
every customer is charged the same for the same
service

SERVICE Table

Customer Service Charge

Jones Cut Grass 40

Smith Rake Leaves 50

Doe Shovel Driveway 60

Williams Cut Grass 40

•What s wrong with

this table ???

• Redundancy

– Duplicate service name

– Duplicate service rates

• Difficult to modify some info

– Rate for cutting grass

• What else ???

Anomalies

• Insertion - if we want to store the fact that

we are now going to offer a service to wash

cars for $25, we cannot include it in the

database until someone wants it

• Deletion - If Doe no longer wants us to

shovel his driveway, when we delete that

row, we will lose how much we charge for

shoveling (since he is the last one using that

service)

Single Concept per Relation

• Tables should contain information about a

single concept or theme; each row should

be an instance of one object or notion

• In the previous table we tried to express two

concepts:

– which customers want which service

– how much each service costs

•How can we “fix”

this table ???

Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

Represent the Model with Two (or more)

Tables

• If there is no customer attributes in
database, then we could use two tables:
– CUSTOMER (Name, Service)

– SERVICE (Service, Charge)

• If customer attributes are included we need
three tables:
– CUSTOMER (Name, address)

– SERVICE (Service, Charge)

– CUSTOMER-SERVICE(Name, Service)

Anomalies

• For this data arrangement, what are the

primary and foreign keys ?
– CUSTOMER (Name, Service)

– SERVICE (Service, Charge)

• For this data arrangement, what are the

primary and foreign keys ?
– CUSTOMER (Name, address)

– SERVICE (Service, Charge)

– CUSTOMER-SERVICE(Name, Service)

SERVICE Table

Service Charge

Cut grass 40

Rake Leaves 50

Shovel 60

CUSTOMER Table

Customer Service
Jones Cut grass

Smith Rake Leaves

Doe Shovel Snow

Williams Cut Grass

Anomalies (con’t)

• We now no longer have anomalies

• Here we now have 14 cells used instead of

12, but in general there will be a savings in

storage as the number of customers would

probably be much greater than the number

of services

• But we have introduced a new potential

problem

Referential Integrity

• If we decide we are no longer going to shovel driveways,

we can not just delete the item from the service table; we

must do something about the customers using that service

• If we want to sign up a new customer for a service not in

the service table, we must either:

– sign him up with a null entry in the service column,

and come back and fix it later

– determine a charge for it and add it to the service table

first; constrain the customer insert

• These are “business rules”, and implemented in different

database schemas different ways (ie triggers)

Normal Forms

• Tables can be classified by the types of anomalies

to which they are vulnerable, or what normal form

they are in

• The normal forms are hierarchical:

– Domain/Key

– Fifth

– Fourth

– Boyce-Codd

– Third

– Second

– First

Relation

• The relation in mathematics is

similar to the two dimension table

we think of in Excel or Access

• However the relation is not just

any table !

First Normal Form

• Any table that meets the definition of a relation is

in first normal form:

– cells are singled value, no repeating groups or arrays

– all entries in a column must be of the same kind (match

domain of column)

– no two rows can be identical

– orders of rows and columns is not significant

• The table SERVICE(Customer, Service, Charge)

is in first normal form

Single Value for Cells

• Character

• Text String - fixed length, or maximum

length

• Text String (unspecified length) - Memo

• Number (integer, decimal, floating, money)

• Date/time

• BLOB (pointer to document, image, video,

sound, etc.)

Puppy Example

• We want to store info about our
puppies (and the tricks they know):

– Single valued: Puppy number, puppy
name, kennel code, kennel name, kennel
location

– Multi-valued: trick ID 1…N, trick name
1 …N, trick where learned 1…N, skill
level 1…N

For 1st Normal Form – Two Tables

[no repeating data in a cell]

• Puppy Table

– Puppy Number

– Puppy Name

– Kennel Code

– Kennel Name

– Kennel Location

• Trick Table

– Puppy Number

– Trick ID

– Trick Name

– Trick Where Learned

– Skill Level

What is the primary key in the Trick table ?

Second Normal Form (2NF)

• In the table SERVICE(Customer, Service, Charge), the

charge is partially dependent on the primary key

(Customer, Service); since it is fully dependent on only

part of the key

• A relation is in the second normal form if all of its non-key

attributes are dependent on all of the key

• Any table that has a primary key composed of one attribute

is automatically in second normal form, but to be in second

normal form a table does not have to have a primary key of

one attribute

• The restructured model with two tables

– (CUSTOMER & SERVICE) is in second normal form

What about our Trick Table ?

How can we get to 2nd Normal form ?

• Trick Table

– Puppy Number

– Trick ID

– Trick Name

– Trick Where Learned

– Skill Level

A relation is in the second normal form

if all of its non-key attributes

are dependent on all of the key

Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

Trick Name was only partially

dependent on the key

• Trick Table

– Puppy Number

– Trick ID

– Trick Name

– Trick Where Learned

– Skill Level

• Trick Table

– Trick ID

– Trick Name

• Puppy Tricks

– Puppy Number

– Trick ID

– Trick Where

Learned

– Skill Level

Transitive Dependency

• Consider the table ATTENDANCE (Person,

Section, Seat, TicketPrice)

• Where each person is assigned to one seat, and

each section has seats with all the same price

• The primary key is just one attribute: Person, so it

is in second normal form

• However: Person --> Section --> TicketPrice

• This is called a transitive dependency

What problems are going to have

maintaining this data ?

• Person Section Seat Price

• Ed C 1 10

• Mary B 2 15

• Leroy C 2 10

• Thelma A 2 20

• Joe B 1 15

• Alice A 1 20

Third Normal Form (3NF)

• A table is in third normal form if it is in second

normal form and if it has no transitive

dependencies

• The ATTENDANCE can be divided into two

tables:

– PEOPLE (Person, Section, Seat)

– PRICE (Section, TicketPrice)

• Now the two tables are in 3NF

• What is the foreign key ?

What about our Puppy Table ?
How can we put our puppy table in 3rd normal form ?

• Puppy Table

– Puppy Number

– Puppy Name

– Kennel Code

– Kennel Name

– Kennel Location

Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

Eliminate Transitive Dependencies

[puppy - > kennel -> name/loc]

• Puppy Table

– Puppy Number

– Puppy Name

– Kennel Code

– Kennel Name

– Kennel Location

• Puppies

– Puppy Number

– Puppy Name

– Kennel Code

• Kennels

– Kennel Code

– Kennel Name

– Kennel Location

What is the FK ?

Copyright Dan Brandon, PhD,PMP Christian Brothers University

Class Exercise

• Draw the E-R diagram for

the puppy model

(puppies, kennels, tricks)

Copyright Dan Brandon, PhD,PMP Christian Brothers University

Don’t look ahead !

Puppy Model

1 to Many Many to Many

Need intersection

table here !

Multiple Primary Key Possibilities

• Even relations in third normal form can have

anomalies

• Situation arises when there are multiple primary

key possibilities

• Consider the table:

– ASSIGNMENT (Customer, Car, SalesPerson)

– A customer may be considering buying more than one

type of car

– A SalesPerson only sells one type of car, but there may

be more than one salesperson for a type of car

ASSIGNMENT Table
[Brice & Adams sell Buicks, Jones is considering Buicks & Pontiacs, Dodd has 2 customers]

Customer Car SalesPerson

Jones Buick Adams

Jones Pontiac Dodd

Doe Cadilac Moore

Willams Buick Bryce

Smith Pontiac Dodd

Evans Cadilac Moore

What problems are going to have maintaining this data ?

Multiple Primary Key

Possibilities (con’t)

• Customer by itself is not a candidate key - why ?

• Salesperson by itself is not a candidate - why ?

• The candidate primary keys are:

– (Customer, Car)

– (Customer, Salesperson)

• But there is another functional dependency:

– Salesperson --> Car

• If Jones is no longer a customer, we will lose the

fact that Adams is a Buick salesperson

Boyce-Codd Normal Form (BCNF)

• A relation is in Boyce-Codd Normal form if

every determinant is a candidate key

– Salesperson --> Car ; but salesperson is not a

candidate key

• Decompose ASSIGNMENT into two

tables:

– SALESPERSON (SalesPerson, Car)

– CUSTOMER (Customer, SalesPerson)

– What is the foreign key ?

Fourth Normal Form

• A relation is in Fourth Normal

form if it is in BCNF and, if the

file contains several multivalued

dependencies, these are dependent

upon each other

Fourth Normal Form (con’t)

• A multivalued dependency holds between

two attributes in a table if the second

attribute can assume different values for a

given value of the first

• For R(A,B,C), if A determines multiple

values of B and A determines multiple

values of C, and B and C are independent,

then the table is not in FNF

Multivalued Dependency

• Consider the Table:

– OUTFIT (Person, Shirt, Pants)

• Which describes the clothing outfits one can

wear

• A person can wear many different shirts

• A person can wear many different pants

• The primary key for the outfitted person is

all three columns

Multivalued Dependency (con’t)

Person Shirt Pants

Joe Blue Yellow

Joe Red Green

Joe Blue Green

Joe Red Yellow

Mary White Black

Mary White Blue

Multivalued Dependency (con’t)

• If one buys another shirt, you have to insert

a row into the table for each pants you have

• If you delete a shirt, you have to delete

many rows

• If Pants and Shirts are independent, then

this table is not in 4NF

• Need to break into two tables:

– PANTS (Person, Pants)

– SHIRTS (Person, Shirts)

Multivalued Dependency (con’t)

• If Pants and Shirts were in some way dependent (such

as you do not wear red shirts with yellow pants), then

you could not break up the original table

• Beware of a join anomaly (when you join the two

tables PANTS and SHIRTS) or join dependency, since

the OUTFITS table may have contained some of these

constraints (such as this person cannot wear this pants

with that shirt)

• Not covered in textbook, see Codd’s original article

Puppy Example

• Puppy Tricks

– Puppy Number

– Trick ID

– Trick Where Learned

– Skill Level

– Costume

• This is ok, if we mean “a
puppy only does a certain
trick while wearing a
particular costume”

• Puppy Tricks

– Puppy Number

– Trick ID

– Trick Where Learned

– Skill Level

• Puppy Costumes

– Puppy Number

– Costume

• This formulation is
necessary if we want to
keep track of the costumes
a puppy can wear

Other Normal Forms

• Fifth Normal Form - also deals with

multivalue dependencies, particularly with

higher order relationships

• Multirelation Normal forms - eliminating

redundancy and anomalies between

multiple but similar relations

Fifth Normal Form

• Fifth normal form (5NF), also known as

Project-join normal form (PJ/NF) is a

level of database normalization designed to

reduce redundancy in relational databases

recording multi-valued facts by isolating

semantically related multiple relationships

• A table is said to be in the 5NF if and only

if every join dependency in it is implied by

the candidate keys

Copyright Dan Brandon, PhD,PMP Christian Brothers University

Salesman Example
[3 concepts]

Copyright Dan Brandon, PhD,PMP Christian Brothers University

Travelling

Salesman
Brand Product Type

Jack Schneider Acme Vacuum Cleaner

Jack Schneider Acme Breadbox

Willy Loman Robusto Pruning Shears

Willy Loman Robusto Vacuum Cleaner

Willy Loman Robusto Breadbox

Willy Loman Robusto Umbrella Stand

Louis Ferguson Robusto Vacuum Cleaner

Louis Ferguson Robusto Telescope

Louis Ferguson Acme Vacuum Cleaner

Louis Ferguson Acme Lava Lamp

Louis Ferguson Nimbus Tie Rack

Fifth Normal Form (con’t)

• The table's predicate is: Products of the type designated by Product

Type, made by the brand designated by Brand, are available from

the travelling salesman designated by Travelling Salesman

• In the absence of any rules restricting the valid possible

combinations of Travelling Salesman, Brand, and Product Type, the

three-attribute table above is OK to model the situation correctly

• However, if a Salesman has certain Brands and certain Product

Types in his repertoire -> if Brand B is in his repertoire, and Product

Type P is in his repertoire, then (assuming Brand B makes Product

Type P), the Salesman must offer only the products of Product Type

P made by Brand B

Copyright Dan Brandon, PhD,PMP Christian Brothers University

Fifth Normal Form (con’t)

Normalized Relation

Copyright Dan Brandon, PhD,PMP Christian Brothers University

Travelling Salesman Product Type

Jack Schneider Vacuum Cleaner

Jack Schneider Breadbox

Willy Loman Pruning Shears

Willy Loman Vacuum Cleaner

Willy Loman Breadbox

Willy Loman Umbrella Stand

Louis Ferguson Telescope

Louis Ferguson Vacuum Cleaner

Louis Ferguson Lava Lamp

Louis Ferguson Tie Rack

Fifth Normal Form (con’t) –

Normalized Relations

Copyright Dan Brandon, PhD,PMP Christian Brothers University

Travelling Salesman Brand

Jack Schneider Acme

Willy Loman Robusto

Louis Ferguson Robusto

Louis Ferguson Acme

Louis Ferguson Nimbus

Fifth Normal Form (con’t) –

Normalized Relations

Copyright Dan Brandon, PhD,PMP Christian Brothers University

Brand Product Type

Acme Vacuum Cleaner

Acme Breadbox

Acme Lava Lamp

Robusto Pruning Shears

Robusto Vacuum Cleaner

Robusto Breadbox

Robusto Umbrella Stand

Robusto Telescope

Nimbus Tie Rack

Robusto

makes 5

products, but

Willi just

sells 4 of

these

Normal Forms

http://www.youtube.com/watch?v=4T15hOhE5N4

Normalization Example

http://www.youtube.com/watch?v=ZiB-BKCzS_I

• In all these normal forms,

we have tried to separate

tables containing multiple

concepts!

Domain/Key Normal Form (DK/NF)

• For all the previous normal forms, no theory

could guarantee that any of them would

eliminate all anomalies

• However, a computer program can go thru

a table (with sufficient data) and find

normalization problems

• Fagin showed that a relation in DK/NF is

free from all anomalies:

– ACM Transactions on Database Systems,

September, 1981

DK/NF (con’t)

• A relation is in DK/NF if every constraint

on the relation is a logical consequence of

the definition of keys and domains

• Constraint - a rule governing static (non

time dependent) values of the attributes

• Key - unique identifier

• Domain - the description of an attribute’s

allowed values (physical & semantic)

DK/NF (con’t)

• In other words, a table is in DK/NF if

enforcing key and domain restrictions

causes all the constraints (business rules)

to be met

• No algorithm for converting a relation to

DK/NF - experience and trail & error

• Define tables where constraints are logical

consequences of keys and domains;

constraints not so handled must be built into

the application via procedures (code)

Attendance Example

• Consider the table ATTENDANCE (Person, Section,

Seat, TicketPrice)

• Where each person is assigned to one seat, and each

section has seats with all the same price

• The primary key is just one attribute: Person

• Constraint: Section --> TicketPrice

• This is not in DK/NF since this constraint cannot be

enforced by the key (not in third normal form since it

has a transitive dependency); ie, you can add a row

that has a different ticket price from a row already in

the table with the same section

Attendance Example (con’t)

• The ATTENDANCE can be divided into

two tables:

– PEOPLE (Person, Section, Seat)

– PRICE (Section, TicketPrice)

• Now the constraint can be enforced in the

second table (you cannot have the same

section with two or more prices)

Assignment Example

• Consider the table:
– ASSIGNMENT (Customer, Car, SalesPerson)

– not in BCNF (every determinant is not a
candidate key)

– Constraint: A SalesPerson only sells one type
of car

• To enforce the constraint, we need to make
the salesPerson a key in a table with the car
he sells
– SALESPERSON (SalesPerson, Car)

– CUSTOMER (Customer, SalesPerson)

Optimization

• There are many optimization “tricks” and

techniques

• They represent trade off’s in terms of:

– speed for different access directions (lookup

or reporting)

– reducing difficulty of queries

– storage space (data and indexes)

– database and program maintenance

• Many of these beyond scope of this course

Optimization (con’t)

• Denormalization

• Low Cardinality Optimization

– One entities relates to two or three of another

• Controlled redundancy

– Smaller record size for common data

• Query/SQL Optimization (later in course)

• Use of Subtypes

• Use of Indexes

• Table Contention

• Physical Media Contention

• Locking Contention (ie with auto-inc keys)

Denormalization

• Consider the table:

– CUSTOMER (CID, CName, City, State, Zip)

– This is not normalized since ZIP --> City,State

• The fully normalized form is:

– CUSTOMER (CID, CNname, Zip)

– ZIP (Zip, City, State)

– less data duplication , easier maintenance, faster order

filing (only ask for zip code)

– however this causes more I/O work to output customer

info, since two tables have to be read (joined)

Denormalization (con’t)

• Another alternative:

– CUSTOMER (CID, CName, City, State, Zip)

– ZIP (Zip, City, State)

• Can still fill orders quicker by only asking for ZIP

• But extra since space used for city and state in

each customer record

• Can use triggers to cascade changes in Zip to

CUSTOMER and to automatically fill in

CUSTOMER City and State fields from given Zip

Denormalization (con’t)

• Consider the tables:

– RX (RxNo, PID, DID, NDC, Date, ...

– PATIENT (PID, FirstName, LastName, ...

– DOCTOR (DID, FirstName, LastName, ...

– DRUG (NDC, BrandName, ...

• However we need to frequently display and print

patient’s name with RX (such as on the label)

• How can we denormalize this for greater efficiency ?

• What problems may arise and how would we handle that ?

Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

Denormalization (con’t)

• RX (RxNo, PID, DID, NDC, Date, PName..

• Place index on PName

• But a person might change their name

• Trigger on changes to LastName and

FirstName in PATIENT table to migrate

changes to RX table

Copyright Dan Brandon, PhD,PMP Christian Brothers University

References

• E. F. Codd, “A Relational Model of Data for Large Shared

Databanks,” Communications of the ACM, 1970

• Birth of the Relational Model

• Intelligent Enterprise, October 1998, p 61, ff

• Fundamentals of Relational Data Organization

• Byte, November 1981, p 48, ff

• Inside Relational Databases with Examples in Access by Mark
Whitehorn and Bill Marklyn

• Beginning Relational Data Modeling, Second Edition by
Sharon Allen and Evan Terry

• Relational Database Design and Implementation, Third
Edition: Clearly Explained 3e (Morgan Kaufmann Series in
Data Management Systems) by Jan L. Harrington

Homework

• Textbook Chapter 6

• Review Questions 1 thru 5

• Project Design Review

– Requirements (info, queries/reports, …)

– Entity Attributes

• Major attributes

• Unique identifiers

– E-R Model

