
Advanced ER Model

The Extended Entity

Relationship Model (EERM)

• Enhanced (or extended) entity relationship

model

– Result of adding more semantic constructs to the

original entity relationship (ER) model

– Mostly involves specialization/generalization via

“sub-types”

• Originally derived from IDEF1X model (see

appendix)

Specialization and Generalization

• Specialization
– Top-down process

– Identifies lower-level, more specific entity subtypes from a

higher-level entity supertype

– Based on grouping unique characteristics and relationships

of the subtypes

• Generalization
– Bottom-up process

– Identifies a higher-level, more generic entity supertype from

lower-level entity subtypes

– Based on grouping common characteristics and relationships

of the subtypes

Biological Inheritance Tree

^ Classification (up)

V Specialization (down)

Copyright Dan Brandon, PhD,PMP Christian Brothers University

Copyright Dan Brandon, PhD,PMP Christian Brothers University

Subtype Entities

• Entities with common identifier and some
common attributes, but also some different
attributes – “IS A” relationship

• Example: Patient who can be of several subtypes
(outpatient, surgery, therapy, etc.); each with some
common and some distinct attributes

• Subtypes may be exclusive; that is one and only
one subtype instance is required for each
supertype instance

• Subtypes “inherit” supertype ID and attributes

Copyright Dan Brandon, PhD,PMP Christian Brothers University

PATIENT - supertype entity class

• PatientNumber

• PatientName

• Address

• AmountDue

Copyright Dan Brandon, PhD,PMP Christian Brothers University

OUTPATIENT Subtype

• Date

• Procedure

• Doctor

• Facility

Copyright Dan Brandon, PhD,PMP Christian Brothers University

SURGERY PATIENT Subtype

• Next of Kin

• CheckIn

• CheckOut

• Anesthesiologist

• Doctors

• Procedures

Copyright Dan Brandon, PhD,PMP Christian Brothers University

THERAPY PATIENT Subtype

• Therapist

• Therapy Schedule

Copyright Dan Brandon, PhD,PMP Christian Brothers University

Subtype Diagram
[exclusive subtypes, indicated with line and “1” or other notation]

Copyright Dan Brandon, PhD,PMP Christian Brothers University

Need for Subtypes

• If there were only an entity for patient in
our database then we would have all the
attributes in this one entity (PatientNumber,
PatientName, Address, AmountDue, Date,
Procedure, Doctor, Facility, Next of Kin, CheckIn,
CheckOut, Anesthesiologist, Procedures,

Therapist, Therapy Schedule); for any one type
of patient much of the attributes would be
unused and much space would be wasted

• Also some relationships might involve only
certain subtypes

Copyright Dan Brandon, PhD,PMP Christian Brothers University

Relationships to Subtypes

Therapist

Exclusive and Inclusive Sub Types
• Each category or cluster (group) of subtypes can be

exclusive or inclusive

• In an exclusive (disjoint) subtype group, the supertype

is associated with at most one subtype

• In an inclusive (overlapping) subtype group, the

supertype can be associated with more than one subtype

• Note that different authors or RDMS’s may use

different diagram symbols

Disjoint

Overlap

Exclusive and Inclusive Sub

Types (con’t)

Copyright Dan Brandon, PhD,PMP Christian Brothers University

Person

Male Female

Person

Teacher Student

Disjoint (Exclusive)– person can

be male or female but not both
Overlap (inclusive) – person may

be both teacher and student

Exclusive (disjoint) Sub Type Group

Each property is just one subtype

Some tools show a ”d”

instead of the “x”.

Inclusive Sub Type Group

Each client can be more than one type

Some tools show an ”o”

For overlapping.

Completeness Constraint

• Specifies whether each supertype occurrence

must also be a member of at least one subtype

– Partial completeness (incomplete): not every

supertype occurrence is a member of a subtype

– Total completeness (complete): every supertype

occurrence must be a member of at least one

subtypes

– Differing notations used

Copyright Dan Brandon, PhD,PMP Christian Brothers University

Completeness Constraint (con’t)

• JobCode is a complete cluster – every

employee is one of the 3 types

• Type is an incomplete cluster– an employee

may be neither manager nor staff

EMPLOYEE

Exercise
• Design a database for a marina which rents boat slips and

sails, performs repairs to boats, and sells gasoline and

other stuff for use on a boat

• The marina is not interested in a computer inventory

system or otherwise tracking the stuff

• It really just wants to keep track of info to prepare monthly

billing for rentals and other charges including who has

rented what for which boat

• The marina assigns all credit charges to boats (so it can

place liens on boats to collect money)

• It also has mechanics who do the repairs and needs to track

which repairs involve which mechanics

• What might some of the entities be ?????

Exercise - Entities/Requirements

• Boat - a fiberglass lined hole in the water into which one

pours money

• Slip - a parking place for a boat which is barely big enough

to park the boat in

• Charge - slip rental, repairs, and other charges to boats

• Sail - an optional component of a boat

• Repairs - a repair is a charge, but not all charges are repairs

• Mechanics - More than one mechanic may be needed for a

repair; keep track of hours per repair per mechanic

• Owner - the lucky guys who pay for it all

• Draw the E-R diagram !

Copyright Dan Brandon, PhD,PMP Christian Brothers University

Don’t look ahead !

E - R Diagram

incomplete

Virtual (abstract) Entities

• An ER model may include virtual or

abstract entities (often called entity clusters)

• A virtual entity is one that actually contains

several entities

• Virtual entities must be separated into the

underlying entities

• For example an ER diagram may contain a

virtual entity for location that must be

divided into city and state entities

Copyright Dan Brandon, PhD,PMP Christian Brothers University

Virtual Entities (con’t)

Location would

be divided into

Building and

Room

Offering would be

Divided into

Course and Class

Relational Database

Design Using E-R Models

Moving from General Design to a Relational Design

[from entity level to table level]

• Transformation of model information expressed in

an E-R diagram into relational database

• Further Normalization (if necessary)

• Optimization

• General Constraints

• Other Business Rules/Processing

– Defaults

– Validation

– Triggers & Stored Procedures

– Recursion

• Transformation of model information

expressed in an E-R diagram into relational

database:

– Tables

– Domains

– Columns and Data Dictionaries

– Primary Keys

– Foreign Keys (relationships)

– Defaults, valiation, masks

– Indexes (for uniqueness, speed)

– Constraints

E-R

Diagram Relational

Tables

Table Level Design Notation

• TABLENAME (field1, field2, field3, …)

• Primary keys are underlined

• Foreign keys are shown in italics

Representing Entities

• E-R entities become relations (tables)
in relational model

• Select a primary key (from candidate
keys)

• Columns are entity attributes, and
must be fully dependent on all of key

• Specify column domains

• Specify any attribute level constraints,
defaults, masks, validation

Choosing Primary Key

• Unique identifier of entity becomes primary key

• If there is more that one unique identifier
(candidate or alternative keys), then one must be
chosen as the primary key - every determinant
must be a candidate key (Boyce Codd Normal
Form) – normalization covered later in the
course

• All columns should be fully dependent upon all
of key (Second Normal form)

• Constraints should be enforced by key or
domains – DKNF (or by later code in
application)

Primary Key Guidelines

• Desirable primary key characteristics

– Non intelligent (no particular meaning)

– No change over time (does not need to be modified)

– Preferably single-attribute

– Preferably numeric

– Preferably less bytes

– Security-compliant

Primary Key (con’t)

• Consider an entity for items of
equipment:

– EQUIP (TagNumber, Manufacturer, Model,

SerialNumber, Description, AcquisitionDate,
PurchaseCost, UsefulLife)

• TagNumber would be the logical choice for
a primary key – sometimes called a “natural
key”

Primary Key (con’t)

• What if there was no tag number?

• Then some other attribute(s) would have to

be chosen for the primary key

• EQUIP (Manufacturer, Model, SerialNumber,

Description, AcquisitionDate, PurchaseCost,

UsefulLife)

Surrogate Keys

• If there was no suitable combination of unique

attributes (for example there was no attribute for

serial number), then a “surrogate” key would have to

be created for the primary key

• In some products this is called an “auto-increment

key”

• EQUIP (EQID, Manufacturer (Make), Model,

SerialNumber, Description, AcquisitionDate, PurchaseCost)

Recommendations

• Use surrogate key not only when there is no

suitable combination of attributes, but when

multiple attributes are involved or when size of

unique identifier is long

• Access time is proportional to log of key size

• Create not-null unique index on natural keys to

enforce uniqueness (Make, Model,

SerialNumber)

Cautions on Surrogate Keys

• Many RDBMS have capability to auto-
increment a key; be careful on:

– Concurrency control, particularly in
high volume operations

– Skipped number problems

– Consolidation of data from different
databases and duplicate surrogate
keys

Representing Relationships

• E-R relationships are represented by values

called “foreign keys”

• A column is a foreign key in one table, if it is

the primary key in another table:

– CUSTOMER (CID, name, …)

– ORDER (orderNumber, CID, date, …)

Minimum Cardinality

• Foreign key columns are required (not null), if the

minimum cardinality (child to parent) is one

– CUSTOMER (CID, name, …)

– ORDER (orderNumber, CID, date, …)

– If every order needs a customer, then the minimum

cardinality is 1 and the CID in ORDER cannot be null

• Or optional (null values are allowed), if the

minimum cardinality (child to parent) is zero [not

every order has a customer]

Representing Weak Entities

• A weak entity depends for its existence on
another entity

• Need “referential integrity” constraints such as:
– insert: cannot add weak entity without foreign key reference

(parent) existence

– deletion: cannot delete foreign key reference entity (parent),
without first deleting children

• Handled directly by the DBMS, or by triggers on
the relation, or in application code

• In IDEF model, the particular referential
integrity constraints to be used are shown on
the diagram

ID Dependent Weak Entities

• Need to make the reference to the parent entity
(foreign key) part of the primary key for the weak
entity relation

• Consider information about cities:

– STATE (stateCode, name)

– CITY (cityName, stateCode, population)

– CITY is dependent on STATE (“Jackson” is not
sufficient to identify city, must indicate the state also)

– The primary key on the CITY table is the combination
of cityName and stateCode

– stateCode is the primary key of the STATE table, and a
foreign key in the CITY table; also stateCode in CITY
table cannot be null

Relationship Classification
[based on max cardinality in each direction]

• Binary (Degree 2)

– 1 to 1

– 1 to Many

– Many to Many

• Recursion (Degree 1)

– 1 to 1

– 1 to Many

– Many to Many

• Higher Degree (> 2)

• Sub Types

RULES

• There are general rules on how to create

relational tables for each of these relationship

types

• The rules involve how many tables are created,

and how foreign keys are created and used

• CASE products use the general rules to go

from an E-R diagram to relational tables

• Other optimization rules and guidelines

concern matters such as the use of indexes

Indexes
• Indexes are used to speed up access to data along a

specific search path

• Unique indexes are also used to enforce

uniqueness

• The primary key is typically automatically either

indexed or hashed for fast access

• In some DBMS, the foreign key may be

automatically indexed

• Need to specify other indexes through DBMS

facilities or SQL Schema – more on this later in

course

Degree 2 - Binary

One to One
[max cardinality in both directions is 1]

For example, each A has one and only one B, and each B has zero or 1 A.

One to One Rules

• Each entity is represented by a table

• Then the primary key of one table is included in the
other table’s attributes (becomes a foreign key)

• In ER diagrams, either (but not both) table can have
the foreign key (child); but for IDEF the parent and
child was selected when the diagram was drawn

• Consider employees and computers where each
employee receives only one computer, and a
computer is assigned to at most one employee
– EMPLOYEE (EID, Name, ..., CID)

– COMPUTER (CID, Type, ...)

• Use a foreign key in only one of the two tables, and
place a unique index on that foreign key

1 to 1 Relationship

One to One Rules (con’t)
• In the employee-computer relationship the

minimum cardinalities were zero

• If a minimum cardinality were one (i.e. each
employee must be assigned a computer) , then that
should be the table (employee) to hold the foreign
key, and that column would not allow nulls

• In the case where both minimum cardinalities are
one, the two entities may be combined in one table

• However if one entity is seldom accessed, or the
use of the entities is independent, then it may be
best to keep them in separate tables

• Also for security reasons, you may want two
tables

One to Many

For example, each A has one and only one B, and each B has zero or many A.

One to Many Rules

• Sometimes called parent (one) to child

(many) relationship

• Each entity is represented by its own

table

• The parent (one side of relationship)

primary key is included in the child’s

(many side) attributes as a foreign key

One to Many Rules (con’t)

• Consider the relationship between

publishers and books:

– PUBLISHER (PID, Name, Address, ...)

– TITLE (Isbn, Title, PID, ...)

• PID was moved into the TITLE table as FK,

since each title has only one publisher

• Why can’t we move Isbn to the Publisher

table instead ????

One to Many Rules (con’t)

• An index on the FK speeds access in

both directions

• ID dependent weak entities (as

children) will already have the FK in

their attributes (since it’s part of their

primary key); for example STATE and

CITY

One to Many Summary

BA

one many

Primary key of parent entity A is placed in child entity B (many side)

1 to Many Relationship

Handling History Data

• History data is typically set up as a 1 to many

relationship

• In the diagram, both the current salary and

salary history is maintained for each employee

“Fan Trap”

Fan Trap Removed

Redundant Relationships
(no need for relationship between Division and Player)

Since we know which players are on a team

and which teams are in a division, we can determine

which players are in a division.

Many to Many

Many to Many

• Each entity is represented by its own table

• A third table needs to be created for the

relationship itself

• This new table includes foreign keys to each

of the other two tables

• This new table also includes attributes that

are properties of the relationship (not the

original entities)

Many to Many (con’t)

• The name of the new table (sometimes called an

intersection table or associative or composite

entity) is the name of the relationship, if one; if

not the table can be named by a combination of

the names of the original two tables

• The primary key of the new table is the

combination of the two foreign keys; the order is

important and should be chosen for the order in

which the table is normally processed ! (the

inverse order can be set up as an index)

Many to Many Summary

BA

A - B

many many

Primary key of each table is combined to form primary

key of new relationship table

Many to Many (con’t)
• Consider the relationship between authors

and books, where an author can write many

books and a book can be written by many

authors:

– AUTHOR (AID, Name, ...)

– TITLE (Isbn, Title, PID, ...)

• Can we add the Isbn to the AUTHOR table

to keep track of the books for each author ?

• Can we add the AID to the TITLE table to

keep track of the authors for each title ?

Intersection Table

• AUTHOR-TITLE (AID, Isbn, Role, ...)

• Here role was an attribute on the

relationship between titles and authors !

• AID should be first, if we more commonly

access the table in author order: “list the

books for each author”

Intersection Table

AID Isbn Role

34 54321 author

21 54321 contributing author

34 12345 contributing author

16 98765 co-author

21 98765 co-author

Many to Many Relationship

Enroll is an Intersection Table

Intersection Table Keys

Copyright Dan Brandon, PhD,PMP Christian Brothers University

Exercise

• Draw the E-R Diagram for the relationships

involving:

– Publishers

– Titles (book titles)

– Authors (write books)

– Copies (copies of titles) - each copy is bar

coded, and the library has at least one copy of

each book

– Students (check out copies)
• for this model we are interested in who has the book is currently

checked out

Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

E-R Diagram

Publisher

Title

Copy

Author

Student

• Now specify the relational tables !

–Underline PK’s

–Circle FK’s (indicate null or not)

PID

ISBN

InventoryNumSID

AID

Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

Relational Model

• PUBLISHER (PID, Name, ...)

• AUTHOR (AID, Name, ...)

• TITLE (Isbn, Title, PID, ...) {PID cannot be null}

• AUTHOR-TITLE (AID, Isbn, Role, ...)
– Attributes on relationships added to PDM/Tables (ie.

Role), just noted on CDM (E-R)

• STUDENT (SID, Name, ...)

• COPY (InventoryNum, Isbn, Condition,

SID, DueBack,...) {SID can be null, Isbn cannot}

Sub-Type Relationship

Subtype Rules

• An entity can have multiple subtypes (clusters)

• Depending on the cardinalities, the supertype

(generic) entity may have more than one subtype and

the relationship can have exclusivity constraints

• The supertype entity becomes one table and each

subtype becomes another table

– The supertype table contains all common attributes

as its columns

– The subtype tables contain their unique columns

Sub Type Keys

• The supertype PK is also the PK of each subtype

• In the subtype, that PK is typically is a foreign key also

depending upon:

– Whether the sub type can “stand alone” (exist

without the super type)

– You may need to do referential integrity checking

between sub types and supertypes; normally

maintenance (add, modify, delete) is done via forms

which may automatically handle the super and

subtype together and/or the referential integrity rules

are handled in the code

Exclusive and Inclusive Sub Types
• Each category (group) of subtypes can be exclusive or

inclusive

• In an exclusive (disjoint) subtype group, the supertype

is associated with at most one subtype

• In an inclusive (overlapping) subtype group, the

supertype can be associated with more than one subtype

• Note that different authors or RDMS’s may use

different diagram symbols

Or “O” for overlap

Or “D” for disjoint

Discriminator

• A “type” indicator (IDEF discriminator) may be

added to the parent record for each category

cluster to indicate which sub type applies for

faster access to subtype information

• For overlapping (inclusive) clusters, multiple

discriminators are used and these are binary

(true/false) attributes

• For a “complete” cluster (all subtypes have been

specified), this is indicated by not allowing the

discriminator to be null

Completeness and Disjoint

Constraints
Complete Disjoint Constraint Overlapping Constraint

Partial Supertype has optional subtypes.

Subtype discriminator can be null.

Subtype sets are unique.

Supertype has optional subtypes.

Subtype discriminators can be null.

Subtype sets are not unique.

Total Every supertype occurrence is a member of

only one subtype.

Subtype discriminator cannot be null.

Subtype sets are unique.

Every supertype occurrence is a member of at

least one subtype.

Subtype discriminators cannot be null.

Subtype sets are not unique.

A vehicle is either a car or truck, cannot

be both, must be one or the other
• One complete disjoint cluster:

– VEHICLE (VIN, SubType,

Make, Model,...

• “Not Null” specification on

SubType (required)

• SubType constrained to be either

‘C’ or ‘T’

– CAR (VIN, Color, ...

– TRUCK (VIN, GVW, Axles, ...

• Note that without the “SubType”

discriminator, we could still determine if

a vehicle was a car or a truck, but with

the discriminator we don’t have to search

thru the subtype table

SubType

An Attorney can be either a litigater

or partner, neither, or both

• Two incomplete overlapping clusters:

– ATTORNEY (ID, Name, L, P, ... {L & P are checklist}

• L & P constrained to be either 0 or 1 (or T or F)

– LITIGATER (ID, win/loss, ...

– PARTNER (ID, Percent, ...

LP

Tables for Disjoint Subtypes (d)
[an employee cannot be more than one subtype (disjoint), but cluster is partial (not

all subtypes are shown, every employee does not need to be one of the 3)]

Tables for Overlapping Subtypes
(multiple discriminators)

Each person is an

employee, student,

or both.

Degree 1 - Recursive

Recursion

• A relationship between an

entity an itself:
– 1 to 1

– 1 to many

– many to many

• Caution: problems in application

implementation –almost always need to do

special coding !!!

1 to 1 Recursion

• Entity gets one table

• Include attribute (column) for foreign key in

the same table, however, the foreign key is

same physical domain as the primary key

• Pick one of the two search directions for the

semantic portion of the domain (what does

it mean)

• Use unique index on FK

1 to 1 Recursion (con’t)

• Consider the sponsor relationship where a person can

sponsor only one other person, and a person can only be

sponsored by one other person

• MEMBERS (MID, Name, MID[person sponsored],...)

• or

• MEMBERS (MID, Name, MID[person sponsoredBy],...)

• Pick one of the two domain semantics

• Referential integrity must still be dealt with, but cannot

automatically set this up in many database products; also

“chicken & egg” situation !

• Also need code so that a member cannot sponsor himself

Member Table

Member Name Sponsored By

12 Doe, John 14

13 Byte, Ima 23

14 Ivy, Dripper 2

Unique Index on Foreign Key

Recursion in MS Access

(need alias table)

Need to add member 23 first…

1 to Many Recursion

• Entity gets one table

• Include attribute (column) for foreign

key in the child (many) table, however

foreign key physical domain is same

domain as the primary key

• Use index on FK

1 to Many Recursion

• Consider the case of a general ledger system, where each

account can have a master (control) account, and each

master account can have many subsidiary accounts

• Recursive tree or forest (multiple trees) structure

• LEDGER (AccountNumber, Type, Balance,

AccountNumber[master],...)

• In a “forest” the foreign key may be null as with the general ledger

accounts (an account does not have to have a master account)

• In a “tree”, only the object at the top has no master account

• Referential integrity must still be enforced (typically in code)

Ledger Accounts

• 10 Cash

– 101 Cash in Banks

• 1011 First TN

• 1012 NBC

– 102 Petty Cash

• 1021 John Doe

• ...

• 11 Accounts Receivable

– 111 Accounts Receivable Trade

– 112 Accounts Receivable Other

Tree Representation o G/L

Accounts

Normally account numbers must match hierarchy also.

Account Table

[Master is Foreign Key]

Account Name Master

10 Cash

101 Cash in Banks 10

1011 First TN 101

1012 NBC 101

Recursion in MS Access

(need alias table)

Many to Many Recursion
(Parts Explosion or Bill of Materials)

• Entity gets one table

• Intersection table is created for the relationship:

– Composite (subassembly)

– Components (parts of)

• Relationship table contains two columns of

foreign keys both with the same physical domain

as the primary key in the first table; the primary

key of the relationship table is the combination of

the two foreign keys, order is important!

• There may be attributes to the relationship itself

A part can be a component in many other parts, and

a part can be made up of many other parts !!!

Many to Many Recursion

• PART (PartId, cost, QtyOnHand, ...)

• ASSEMBLY (PartID, PartID, Qty)

• In the second table, the first column

represents the assembly and the second

column represents the parts of which the

assembly is composed, the third column is

how many of the second column part is

used in making the assembly

Assembly (Intersection Table)

Part Component Part Quantity

3 2 2

3 5 2

4 6 3

5 7 2

5 4 1

5 6 2

Also need restriction that a part cannot be composed of itself.

Access Relationship Grid
[part table added twice (alias)]

Recursive Relationships in Visio

http://www.youtube.com/watch?v=VJ1sWVON4S8

Recursive Relationships in

Access

Note: without adding code, there's nothing to stop a

particular record from being its own parent

http://www.youtube.com/watch?v=Ni1IwEJiyOU

ER Model for Pharmacy

In Power Designer,

have to specify the

recursive relationship

in the relationship

dialog box not via

dragging the tool.

Pharmacy Access Model

Have to show the

Drug table twice.

Relationships of Degree N

• Each entity is represented by its own table

• A new table needs to be created for the

relation itself

• This new table includes foreign keys to each

of the other tables

• This new table also includes attributes that

are properties of the relationship (not the

original entities)

Relationships of Degree N (con’t)

• The name of the new table is the name of the

relationship, if one; if not the table can be

named by a combination of the names of the

original tables

• The primary key of the new table is the

combination of the foreign keys; the order is

important and should be chosen for the order in

which the table is normally processed

• Other orders can be set up as an indexes

Relationships of Degree N (con’t)

• Consider the relationship between Car

Dealers, Auto Types (cars, vans, trucks,

etc), and Car Brands (Ford, GM, etc):
– DEALERS (DID, Name, Address, ...)

– TYPES (TID, Name, SafetyReq, ...)

– BRANDS (BName, ...)

– DEALER-TYPES-BRANDS (DID,TID, BName,

QtyStocked, ...)

Relationships of Degree N (con’t)

• Sometimes the relationship has its own natural

identifier, and probably name

• This natural identifier could be used as the

primary key

• However, you still may need the combination of

foreign keys to enforce uniqueness of that

combination:

– PRESCRIPTION (RXNumber, DID, PID, NDC, ...)

Relationships of Degree N (con’t)

Copyright Dan Brandon, PhD,PMP Christian Brothers University

RX Three-way Intersection Table

(including refills)

Simplified Summary

• Create a table for each entity

• Create an attribute for each property with the
unique identifier becoming the primary key

• Normalize if necessary

• Represent relationships with foreign keys; index
foreign keys

– 1 to 1: key of either as FK of other

– 1 to N : key of parent as FK in child

– M to N : intersection table having keys of both

• Handle referential integrity and other constraints

Access FK’s and Referential Integrity

Make sure that CID is defined as exactly the same type in both tables !

CID in Invoice table

is foreign key !

Use relationship grid in Access to set up foreign keys !

Check “enforce referential integrity” !

Error message trying to add invoice for customer not in customer table !

Access Referential Integrity
• Referential integrity is a system of rules that Microsoft Access uses to ensure that relationships between records in related tables

are valid, and that you don't accidentally delete or change related data. You can set referential integrity when all of the
following conditions are met:

• The matching field from the primary table (primary table: The "one" side of two related tables in a one-to-many relationship. A
primary table should have a primary key and each record should be unique.) is a primary key (primary key: One or more fields
(columns) whose values uniquely identify each record in a table. A primary key cannot allow Null values and must always have
a unique index. A primary key is used to relate a table to foreign keys in other tables.) or has a unique index (unique index: An
index defined by setting a field's Indexed property to Yes (No Duplicates). A unique index will not allow duplicate entries in
the indexed field. Setting a field as the primary key automatically defines the field as unique.).

• The related fields have the same data type (data type: The characteristic of a field that determines what type of data it can hold.
Data types include Boolean, Integer, Long, Currency, Single, Double, Date, String, and Variant (default).). There are two
exceptions. An AutoNumber (AutoNumber data type: In a Microsoft Access database, a field data type that automatically stores
a unique number for each record as it's added to a table. Three kinds of numbers can be generated: sequential, random, and
Replication ID.) field can be related to a Number field with a FieldSize property setting of Long Integer, and an AutoNumber
field with a FieldSize property setting of Replication ID can be related to a Number field with a FieldSize property setting of
Replication ID.

• Both tables belong to the same Microsoft Access database. If the tables are linked tables (linked table: A table stored in a file
outside the open database from which Access can access records. You can add, delete, and edit records in a linked table, but you
cannot change its structure.), they must be tables in Microsoft Access format, and you must open the database in which they are
stored to set referential integrity. Referential integrity can't be enforced for linked tables from databases in other formats.

• The following rules apply when you use referential integrity:

• You can't enter a value in the foreign key (foreign key: One or more table fields (columns) that refer to the primary key field or
fields in another table. A foreign key indicates how the tables are related.) field of the related table that doesn't exist in the
primary key of the primary table. However, you can enter a Null (Null: A value you can enter in a field or use in expressions or
queries to indicate missing or unknown data. In Visual Basic, the Null keyword indicates a Null value. Some fields, such as
primary key fields, can't contain Null.) value in the foreign key, specifying that the records are unrelated. For example, you
can't have an order that is assigned to a customer that doesn't exist, but you can have an order that is assigned to no one by
entering a Null value in the CustomerID field.

• You can't delete a record from a primary table if matching records exist in a related table. For example, you can't delete an
employee record from the Employees table if there are orders assigned to the employee in the Orders table.

• You can't change a primary key value in the primary table, if that record has related records. For example, you can't change an
employee's ID in the Employees table if there are orders assigned to that employee in the Orders table.

Relationships Created in Access

• The kind of relationship that Microsoft Access creates depends on how the related fields are defined:

• A one-to-many relationship is created if only one of the related fields is a primary key (primary key:
one or more fields (columns) whose values uniquely identify each record in a table)

– A primary key cannot allow Null values and must always have a unique index. A primary key is used to relate a table to foreign
keys in other tables.) or has a unique index (unique index: An index defined by setting a field's Indexed property to Yes (No
Duplicates). A unique index will not allow duplicate entries in the indexed field. Setting a field as the primary key automatically
defines the field as unique.).

• A one-to-one relationship is created if both of the related fields are primary keys or have unique
indexes.

• A many-to-many relationship is really two one-to-many relationships with a third table whose
primary key consists of two fields— the foreign keys (foreign key: One or more table fields
(columns) that refer to the primary key field or fields in another table. A foreign key indicates how
the tables are related.) from the two other tables.

• You can also create a relationship between a table and itself. This is useful in situations where you
need to perform a Lookup within the same table. In the Employees table, for example, you can define
a relationship between the EmployeeID and ReportsTo fields, so that the ReportsTo field can display
employee data from a matching EmployeeID.

• Note If you drag a field that isn't a primary key and doesn't have a unique index to another field that
isn't a primary key and doesn't have a unique index, an indeterminate relationship is created. In
queries containing tables with an indeterminate relationship, Microsoft Access displays a default
join (join: An association between a field in one table or query and a field of the same data type in
another table or query. Joins tell the program how data is related. Records that don't match may be
included or excluded, depending on the type of join.) line between the tables, but referential
integrity (referential integrity: Rules that you follow to preserve the defined relationships between
tables when you enter or delete records.) won't be enforced, and there's no guarantee that records are
unique in either table.

Automatically Building Physical Model

(relational tables) in Case Product

Copyright Dan Brandon, PhD,PMP Christian Brothers University

ER Studio

Copyright Dan Brandon, PhD,PMP Christian Brothers University

https://www.youtube.com/watch?v=sMNIL9IdU50

SAP Power Designer
[https://www.sapstore.com/solutions/61111/SAP-

PowerDesigner?url_id=ctabutton-UnifiedSearchResult]

• Power Designer was purchased by SAP and
became SAP Power Designer in 2010

Copyright Dan Brandon, PhD,PMP Christian Brothers University

https://www.sapstore.com/solutions/61111/SAP-PowerDesigner?url_id=ctabutton-UnifiedSearchResult

Referential Integrity Checking

within Application

• Database independence

– Different database products have different ways to
handle referential integrity

• Can program any kind of business logic

– Trees vs Forests (top level nodes do not have master accounts)

• Can give meaningful error messages

• Can check all the relationships for each entity
involved

– Check each FK for add’s/mod’s

– Check dependencies for each delete; verify
cascades

Referential Integrity Checking in

Application Code (Deletion)

• // referential integrity check in PHP/MySql for web application

• $query = "select wbsCode from $tableName ";

• $query = $query."where wbsMaster = '$id'"; // text key

• $result = mysql_query($query);

• if (mysql_affected_rows() > 0) {

• echo '<H2>Cannot delete this code,’;

• echo ‘ another code(s) has this code as a master’;

• echo ‘ !</H2>';

• exit;

• }

Referential Integrity Checking in

Application Code (Insertion)

• if ($master != "") { // referential integrity check in PHP/MySql for Web App

• if ($level == 0) {

• echo '<h2>Error: If a Master WBS Code is specified,’;

• echo ‘ the level must not be zero !</h2>';

• exit;

• }

• $query2 = "select * from $tableName where wbsCode='".$master."';";

• $result2 = mysql_query($query2);

• $num_results2 = mysql_num_rows($result2);

• if ($num_results2 == 0) {
echo '<h2>Error: Invalid/Non-existent Master WBS Code !</h2>';

• exit;

• }

• }

Services ER Diagram

Specify Relational Tables

Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

Services Model
[if charging a different cost to each customer, then cost would also go in intersection table]

CUSTOMER (Name, Address, …)

SERVICE (ServiceCode, Cost, …)

C_S (Name, ServiceCode, When)

Class Exercise

• Create relational model for

A/R office shown in the

following diagram!

• Assume payments are

applied to only one invoice

E - R Diagram

Company

Customer Service

Invoice

PartialFull Over

Payment

1

sub sub sub

invoice shows
each service

provided

FID

CID SID

IID

PID

Exclusive (D)

• Specify the relational tables !

Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

Relational Model

• COMPANY (FID, Name, Address, ...)

• CUSTOMER (CID, Name, Address, ...,FID)

• SERVICE (SID, Desc, Basis, Rate, FID)

• INVOICE (IID, CID, TotalDue, TotalPaid)

• LINEITEM (IID, SID, Date, Qty, Charge)

• or if a service can appear more than once on an

invoice (not known from E-R diagram):

– LINEITEM (IID,Line#, SID, Date, Qty, Charge)

– not handled directly by E-R CASE

• PAYMENT (PID, Type, Date, Amount, RefNum, IID)

– PARTIAL (PID, Reason, ...)

– OVER (PID, RebateCheckNumber, ...)

– FULL (PID, ThankYouCallRef,...)

– Type is not null, and must be either P, O, or F (each

of these could trigger the insert into sub type table,

as well as calculation of total paid in the INVOICE

table)

• What if we allow a payment to be

applied to many invoices ?

Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

Many to Many Relationship

Between Payment and Invoice

• PAYMENT (PID, Type, Date, Amount, IID)

– PARTIAL (PID, Reason, ...)

– OVER (PID, RebateCheckNumber, ...)

– FULL (PID, ThankYouCallRef,...)

• APPLICATION (PID, IID, AmountApplied)

– APPLICATION is intersection table

– Need constraint that all amounts applied for a

payment add up to the payment amount

Marina E - R Diagram

incomplete

Specify the relational tables !

Copyright Dan Brandon, PhD,PMP Christian Brothers University

Don’t look ahead !

Relational Model

• BOAT (RNum, Type, Length, ...)

• OWNER (SS, Name, ...)

• BOAT-OWNER (RNum, SS, PrimaryContact)

• SLIP (SlipNum, Rnum, Size, Location) RNum can be NULL

• CHARGE (TicketNum, RNum, Date, Type, AmountDue,

AmountPaid) RNum cannot be NULL, Type is discriminator

• REPAIR (TicketNum, Description) SUBTYPE

• MECHANIC (MID, Name, ...)

• REPAIR-MECH(TicketNum, MID, Hours) Intersection Table

• SAIL (SID, RNum, Desc, ...) RNum can be NULL

Problem Statement
• A database is required to maintain journal articles. Each

journal is identified by its journal ID (JID), and has many

issues published on a certain date

• The articles (called) manuscripts have a unique code

number (MID) and only appear in one issue (IID)

• The manuscripts are written by one or more authors and

concern one or more subjects

• The author information includes their code number (AID),

name and city, and the subject information includes its

code number (SID) and name

• The manuscript information also includes title, first page,

and last page numbers

E-R Model

What are the relational tables ?

Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

Relational Tables
(PK is underlined, FK’s are italicized)

• JOURNAL (JID, JName)

• ISSUE(IID, JID, Date)

• MANUSCRIPT(MID, IID, Title, P1, P2)

• AUTHOR (AID, AName, City)

• SUBJECT (SID, SName)

• MA (MID, AID) manuscripts by authors

• MS (MID, SID) subjects by authors

Access Model

References

• Database Design Using Entity-Relationship Diagrams (Foundations of

Database Design) by Sikha Bagui and Richard Earp

• Data Modeling Diagrams: Entity, Entity-Relationship Model,

Warnier|orr Diagram, Frsar, Data Structure Diagram by Books LLC

• Database Systems: Design, Implementation, and Management (with

Bind-In Printed Access Card) by Carlos Coronel, Steven Morris, and

Peter Rob

• Concepts of Database Management (Cengage Sam Compatible

Products) by Philip J. Pratt and Joseph J. Adamski

• Data Modeling Essentials, Third Edition by Graeme Simsion and

Graham Witt Database Development for Dummies by Allen G. Taylor

Homework

• Textbook Chapter 5

• Review questions 1 thru 7

• Test 1 upcoming

• IDEF1X Appendix

Appendix

IDEF1X

Copyright Dan Brandon, PhD,PMP Christian Brothers University

IDEF

• IDEF (Integrated Definition) became a U.S.
national standard in 1993

– IDEF1X (Definition 1, Extended)

– Robert Brown 1979 [Lockheed]

• Based upon development in the US Air
Force in 1980’s and eventually all of DoD

• Only used for relational databases, and
includes the concept of a domain

• May be required in US government contract
work

Copyright Dan Brandon, PhD,PMP Christian Brothers University

IDEF Models

• Two model types:

–E-R (Logical) – shows entities

and relationships

–Key Based (Physical) – shows

relational tables and keys

Copyright Dan Brandon, PhD,PMP Christian Brothers University

E-R Model IDEF Model

Entity Entity

Attribute Attribute

Relationship Relationship

1:1 & 1:N Relationships Non-Identifying Connecting Relationship

N:M Relationship Non-specific relationship

ID-Dependent Relationship Identifying Connecting Relationship

Weak Entity (non ID-dept.) None

Supertype Entity Generic Entity

Subtype Entiry Category Entity

Copyright Dan Brandon, PhD,PMP Christian Brothers University

IDEF Relationships

• Relationship types:

– Non-Identifying Connection

– Identifying Connection

– Non-specific

– Categorization

• All relationship types except for

categorization can be named

Copyright Dan Brandon, PhD,PMP Christian Brothers University

Non-Identifying Connection

• An “association” of entities; “has-a” relationship

• Shown with dashed line with a small solid circle (dot) on
the child (many) side

– Even 1 to 1 relationships need a “parent” designation

• Default relationship of 1:N with mandatory parent (min
cardinality of 1) and optional child (min cardinality of
zero) needs no further symbols

• For minimum cardinality of one (or greater) on the child
side, a “P” (“positive”) is placed next to the dot

• For minimum cardinality of zero on the parent side, a
diamond is placed at that end of the dashed line

• For 1-1 relationships, a “1” is placed near the dot
indicating that 1 child is required (1 and only 1), or a “Z”
is placed there indicating zero or 1 children

Non-Identifying Connection

• X (one/parent side)
– Blank – min cardinality is

1

– Diamond – min
cardinality is zero

• Y (many/child side)
– Blank – min cardinality is

zero

– P – min cardinality is 1 or
more

– 1 – a 1:1 relationship with
a minimum cardinality of
1

– Z – a 1:1 relationship
with a minimum
cardinality of 0

Copyright Dan Brandon, PhD,PMP Christian Brothers University

Identifying Connection

• Same as “ID-dependent” relationships in E-R

• A solid line is used, and the small filled circle (dot) is on
the many (child) side of the relationship

• The identifier of the parent is part of the identifier of the
child (the “FK” [foreign key] note may be applied to that
identifier in the child entity)

• The entity symbol on the child side may also have rounded
corners

• A 1, Z, or P may be placed next to the dot as was the case
for the non-identifying connection

• Weak entities (that are not ID-dependent) cannot be
specifically show in the IDEF model, except by stating that
the minimum cardinality on the one (parent) side is one

Identifying Connection

• X
– Blank – min cardinality is

1

– Diamond – not allowed
here !

• Y
– Blank – min cardinality is

zero

– P – min cardinality is 1 or
more

– 1 – a 1:1 relationship with
a minimum cardinality of
1

– Z – a 1:1 relationship
with a minimum
cardinality of 0

Copyright Dan Brandon, PhD,PMP Christian Brothers University

Non-specific

• A many to many relationship

• Uses a solid line with a small filled circle

(dot) on both sides

• Can have a “P” on either side

• Some methodologies may force changing

this into two 1:N relationships

• In IDEF, N degree relationships must be

broken down into binary relationships

Non-Specific Connection

• X

– Blank – min

cardinality is 0

– P – min cardinality is

1

• Y

– Blank – min

cardinality is 0

– P – min cardinality is

1

Referential Integrity Options shown

on IDEF

Insert -> RestrictDelete -> Restrict

Delete -> Cascade

Copyright Dan Brandon, PhD,PMP Christian Brothers University

Categorization

• Same as super/sub type relationship in ER

• Sub types can be grouped into
“categorization clusters”; each cluster may
have a “discriminator” which is an attribute
of the supertype to indicate which subtype
applies to each supertype entity

• A supertype cannot be associated with more
than one subtype within a cluster, but can be
associated with different subtypes in
different clusters

Copyright Dan Brandon, PhD,PMP Christian Brothers University

• Clusters can be “complete” (double line
under cluster symbol, or “C” within circle)
where all subtypes are itemized or
“incomplete” where not all subtypes are
itemized (a generic type need not be one of
the category types in this cluster)

• All subtypes require a supertype so the min
and max cardinality in that direction is
always one

• Currently in IDEF, a category entity cannot
have more than one associated generic
entity

A “C” in the

circle would

indicate a

complete

cluster.

Super

Sub Sub

Discriminator

X

Copyright Dan Brandon, PhD,PMP Christian Brothers University

IDEF Example

