
The Relational Model

Relational Model

• Model of the logical database structure, not

physical structure

• The relational model is a table level model, as

opposed to the E-R model which is an entity

level model

• Relational Model has advantages over other

data models in terms of:
– Flexibility of queries

– Non procedural programming (queries without

programming)

– Consistency of queries and algebra

Original Reference

• E. F. Codd, “A Relational

Model of Data for Large

Shared Databanks,”

Communications of the

ACM, 1970

Copyright Dan Brandon, PhD,PMP Christian Brothers University

Database Usage

Copyright Dan Brandon, PhD,PMP Christian Brothers University

Peak Database Throughput
[JSP Net Application, PC Magazine]

• Oracle 9i – 629 pages/second

• MySQL 4.0 – 608 pages/second

• IBM DB2 Universal Database 7.2 – 494
pages/second

• Sybase Adaptive Server Enterprise 12.5 –
476 pages/second

• Microsoft SQL Server 2000/SP2 – 209
pages/second

Highly problem dependent !

Terminology

• “When I use a word, “ Humpty

Dumpty said, in a rather scornful tone,

“It means just what I choose it to mean

- neither more nor less.”

• “The question is,” said Alice,

“Whether you can make words mean

so many different things.”

• “The question is,” said Humpty

Dumpty, “Which is to be master -

That’s all.”

Terminology (con’t)
Relational Object

Oriented

Programming User

Relation Object Type File Table

Tuple Object Record Row

Attribute Mapping to an

instance of

another type

Field Column

Degree or arity # of properties # of fields # of columns

cardinality # of mappings # of records # of rows

The “relation” is a Mathematical Table

Copyright Dan Brandon, PhD,PMP Christian Brothers University

Relational Model

• Model of the logical database

structure, not physical structure

• ER models (discussed later in

course) can be converted to

relational models

• Relational Model has advantages

over other data models in terms of

flexibility of queries, non

procedural programming, and

consistency of queries and algebra

//upload.wikimedia.org/wikipedia/commons/7/7c/Relational_database_terms.svg

Advantages of Relational Model

• Represents relationships by values not pointers

• Allows non-procedural access to information

(indicate what information you want, not how to

get it)

• Additional relationships added relatively easily

• Sound mathematical foundation to avoid

inconsistencies and irregularities

• Uses “indexes” for speed of access, and indexes

can be dynamically created (and cached) from data

tables

Relations and Relationships
(foreign keys used for relationships)

Copyright Dan Brandon, PhD,PMP Christian Brothers University

Relation

• A relation is a two dimensional table that holds

information about something (entity or object)

• The “relational” in relational database comes from the

word relation, not relationships

• But not just any kind of table:

– The cells of the table must be single valued; no repeating

groups. The single value need not be of fixed length

– All of the entries in a column must be of the same, and

satisfy the domain of that column. A column has a unique

name

– No two rows may be the same

Characteristics of Tables

Copyright Dan Brandon, PhD,PMP Christian Brothers University

TITLE Table [ISBN is PK, Publisher is FK]

Isbn Title Publisher

0-03-123456-6 T1 P1

0-02-654321-9 T2 P1

0-01-234567-8 T3 P2

COPY Table [ISBN/Copy # is PK, Student & ISBN are FK’s]

Title CopyNumber Student Due

Date
Isbn-T1 1 null null

Isbn-T1 2 SId-S1 4/1/96

Isbn-T1 3 SId-S2 5/2/96

Isbn-T2 1 null null

Isbn-T2 2 null null

Isbn-T3 1 SId-S1 3/27/96

Isbn-T3 2 null null

Relation (Table) of Students:

STUDENT (Name, StudentId, Major, Sex)

Name StudentId Major Sex

Jones, Sam 11111111 CS M

Smith, Jane 55555555 Biology F

Brown, Ed 777777777 ChemE M

Moore, Sally 222222222 IT F

Key (mathematically)

• A group of one or more attributes that uniquely
identifies a row

• In the relation:

– STUDENT (StudentId, Major, Name, Address,...)

– StudentId is a key

• In the relation:

– GRADE (StudentId, Course, Grade)

– (StudentId, Course) is the key [assuming a student only
completes the same course once, or only the last taking
of the course is retained in the database]

Unique Key

• The notion of key described on the previous slide

is the mathematical term

• In practice this is usually called a unique key

• There may be other keys that are not unique (and

these could be used as indexes)

• There may be more than one unique key

(candidate keys), but only one is the main table

key (or primary key)

Primary Key

• In an employee table, the primary key would probably be
employeeNumber; another unique key would be social
security number (a unique index would probably be set up
on social security number to avoid duplicates)

• A table can only have one “primary key”

• A non-unique key may be “name”

• In some terminology the word primary has to do with the
primary physical organization of the records

• Usually the table’s primary organization (hashed or b-tree
data structure) is consistent with the main unique key

Foreign Key

• A Foreign Key in one table is a value that is the

primary (main) key of another table

• A table can have none, one, or many foreign keys

• The value of Isbn in the COPY table is a foreign

key, since the value of Isbn is the primary key in

the TITLE table

• The value of StudentId in the COPY table is a

foreign key, since the value of StudentId is the

primary key of the STUDENT table

COPY Table [ISBN/Copy # is PK, Student & ISBN are FK’s]

Title CopyNumber Student Due

Date
Isbn-T1 1 null null

Isbn-T1 2 SId-S1 4/1/96

Isbn-T1 3 SId-S2 5/2/96

Isbn-T2 1 null null

Isbn-T2 2 null null

Isbn-T3 1 SId-S1 3/27/96

Isbn-T3 2 null null

VEND_CODE is FK in the PRODUCT Table

Copyright Dan Brandon, PhD,PMP Christian Brothers University

Types of Keys
• Several different types of keys are used in the relational model

• Some authors and RDBMS’s may have slightly differing definitions
– Composite key: key that is composed of more than one attribute

– Key attribute: attribute that is a part of a key

– Superkey: key that can uniquely identify any row in the table

– Candidate key: minimal superkey

– Primary key: A candidate key selected to uniquely identify all other attribute values in any

given row; cannot contain null entries

– Entity integrity: condition in which each row in the table has its own unique identity

• All of the values in the primary key column must be unique

• No key attribute in the primary key can contain a null

– Null: absence of any data value

• Unknown attribute value, known but missing attribute value, or inapplicable condition

– Referential integrity: every reference to an entity instance by another entity instance is

valid

– Foreign key: primary key of one table that has been placed into another table to create a

common attribute

– Secondary key (index): key used strictly for data retrieval purposes

Indexes

• Used to quickly and logically access rows in

a table

– Index key: index’s reference point that leads to

data location identified by the key

– Unique index: index key can have only one

pointer value (row) associated with it

– Non-unique index: index key can have multiple

rows associated with it

• Each index is associated with only one table

– An index can have multiple attributes

RDBMS Integrity

Codd’s Relational Rules

Codd’s Relational Rules (con’t)

Relational Algebra

Relational Database Data Manipulation

• Procedural

– Relational Algebra

• Non-procedural

– Query by Example (QBE) - [ie Access]

– Relational Calculus (Predicate Calculus)

– Transform Languages (ie SQL)
• Command Line

• Within programming language (embedded or call
level)

Relational Calculus

• Non – Procedural (indicates properties

of data to be retrieved):

– Tuple Relational Calculus – integrates

over rows [basic SQL]

– Domain Relational Calculus – integrates

over domain (columns) [SQL subqueries]

• Implemented in SQL

Relational Model

• S (SID, SName, City)

• P (PID, PName, Size, Price)

• SP (SID, PID, Qty) Intersection Table

Foreign Keys ?

Salesperson Table (S)

SID Sname City
S1 Peterson Aarhus

S2 Olsen Copenhagen

S4 Hansen Odense

S5 Jensen Copenhagen

Product Table (P)

PID PName Size Price
P1 Shirt 6 50

P3 Trousers 5 90

P4 Socks 7 20

P5 Blouse 6 50

P8 Blouse 8 60

SP Table (Intersection Table)

SID PID Qty
S2 P1 200

S2 P3 100

S4 P5 200

S4 P8 100

S5 P1 50

S5 P3 500

S5 P4 800

S5 P5 500

S5 P8 100

Relational Algebra

• Relational algebra combines relations by
means of operators to form new relations
which, combined with other relations by
means of a further operator, can form new
relations (in other words relational operators
can be nested)

• Relational Algebra is a procedural approach to
data manipulation

• Understanding Relational Algebra makes it
easier to see what how SQL performs its work

Eight Operators

• Projection

• Selection

• Union

• Intersection

• Difference

• Product

• Division

• Join

The result of an operation is always a relation, even if

it is a “singleton” or “null relation” !

Projection
• A vertical section of a table; the

projection statement selects some

columns from a table and creates a new

table whose rows only contain the

desired columns

• T = S [City];

• OR “Which cities have salespersons ?”

Table: T (note that T contains one less row

than S because there are two salespersons in

Copenhagen)

City
Aarhus

Copenhagen

Odense

Projection Examples

Selection
• A selection is a subset of the set of the

rows in a table - sometimes called

“restriction”

• The selection is made on the basis of

the contents of one or more columns

• T = S WHERE City = “Copenhagen”;

• OR
Which salespersons are based in Copenhagen?

Which salespersons are based in Copenhagen?

SID Sname City

S2 Olsen Copenhagen

S5 Jensen Copenhagen

Selection Examples

Combine Selection and Projection

• What quantity of product P1 has

been sold by salesperson S5 ?
– T = SP[Qty] WHERE PID = P1 and SID = S5;

• The answer is the single column,

single row table of 50.

Union
• The union of two tables is a new table

containing the rows of both tables; duplicate

rows are eliminated

• The two tables in the union have to have the

same columns (same number of attributes,

and attributes in corresponding columns

have same domain)

• Similar to the logical “OR”

Which of the salespersons are either in

Copenhagen or have sold some P8 ?

• T1 = S [SID] WHERE City =

Copenhagen;

• T2 = SP [SID] WHERE PID = P8;

• T = T1 UNION T2; (or T1+T2)

• or in one statement:

• T= (S[SID] WHERE City = “Copenhagen”)

UNION (SP[SID] WHERE PID = P8);
• Note that T1 and T2 both have just one column of salespersons

T1

SID
S2

S5

T2

SID
S4

S5

T (Union of T1 and T2)

SID
S2

S4

S5

Union Example

Intersection
• The intersection of two tables is a

new table containing only those

entries that are members of both

tables

• The tables must have the same

columns

• Similar to the logical “AND”

Which salespersons are both in

Copenhagen and have sold P8 ?

• Using T1 and T2 from the

last example

• T = T1 INTERSECT T2;

• The answer is the table

with only S5 in it

Intersection

Intersect Example

Difference

• The difference of two tables is

the set of entities that are

members of the first table but

not of the second

• Both tables have the same

columns

Which salespersons are in Copenhagen

but have not sold any P8 ?

• Using T1 and T2 from the

last example

• T = T1 - T2;

• The answer is the table

with only S2 in it

T = T1 - T2 = [S2]

• T1 (in Copenhagen)

–S2

–S5

• T2 (sold P8)

–S4

–S5

Difference Example

Product (Cartesian)
• The product of two tables is a new table

containing rows corresponding to all

combinatorial possibilities of the rows of

the two tables

• Similar to matrix multiplication, except

concatenate rows instead of arithmetic

multiplication

Product Example:

• Table 1 has two rows the first of which contains

a1 and b1, the second of which contains a2 and b2

– a1 b1

– a2 b2

• Table 2 has two rows the first of which contains

c1 and d1, the second of which contains c2 and d2

– c1 d1

– c2 d2

a1 b1 x c1 d1

a2 b2 c2 d2

• The product of the two tables

contains 4 rows:

– a1, b1, c1, d1

– a1, b1, c2, d2

– a2, b2, c1, d1

– a2, b2, c2, d2

Resulting table size…

• Multiply Rows: If the first table in a product

has N rows and the second table in a

product has M rows, the product will have

N times M rows

• Add Columns: If the first table in a product

has X columns and the second table in a

product has Y columns, the product will

have X plus Y columns

What are all possible combinations

of Salespersons and Products ?

• T = MULTIPLY S[SID] WITH

P [PID]; (or S[SID] x P[PID])

• The result is a table with two

columns and twenty rows (for

each combination of SID[4] and

PID [5])

Product Example

Division
• Division involves a dividend, divisor, remainder,

and quotient:

– DIVIDEND / DIVISOR = QUOTIENT

• The dividend table will have M + N columns

• The divisor table will have N columns with the

same columns as N columns of the dividend

• The quotient will have M columns

• The remainder will have M + N columns

• Most RDMS still do not support division

Division (con’t)

• Division is the inverse of multiplication

• The table formed by the union of

– the quotient multiplied by the divisor

– and the remainder

• is the original table

Which salesperson has sold

some of all products?

• T = DIVIDE SP BY P [PID] ;

• The result (quotient) is only S5

• Another interpretation of division is: Which sets
of salesman rows (M=1) of the dividend (SP) have
the attributes of the divisor (ie which S’s in SP are
related to all rows in the P table)

• Used for complex pattern matching searches:
“Who has blond hair, medium build, owns a red
corvette, ...”

Divisor
P(PID)

P1

P3

P4

P5

P8

Remainder - SP rows not

containing quotient (S5)

SID PID

S2 P1

S2 P3

S4 P5

S4 P8

Divide Example

Join
• A join usually* requires two tables to have

one or more columns in common (normally

PK in one table and FK in other !)

• The columns in common between the two

tables are related by a “join condition”

• The two tables are multiplied together,

then all rows not matching the join

condition are eliminated

* The “cross join” is the same as the Cartesian product

• If the join condition is the equality

between the columns in common, the

join is called an equijoin

• If one of the two common columns in

an equijoin is eliminated, then it is

called a natural join (the most common

kind of join which removes the

redundancy)

Join example:

• T1:

– a1, b1 typically the b column here is a foreign key

– a2, b2

• T2:

– b1, c1 typically the b column here is a primary key

– b2, c2

• Join T1 with T2 where T1.col2 = T2.col1:

– a1, b1, b1, c1

– a1, b1, b2, c2 eliminate since T1.column 2

– a2, b2, b1, c1 not equal T2.column1

– a2, b2, b2, c2

• Resulting table from equi join:

– a1, b1, b1, c1

– a2, b2, b2, c2

• For a natural join, the identical

columns are removed also:

– a1, b1, c1

– a2, b2, c2

• What we have done here is to supplement

T1 with information from T2,

corresponding to matching b (foreign key to

primary key)

Class Exercise: Find natural join

of these two tables on DID:

• EMPLOYEE (EID, EName, DID)

– 123 Doe ABC

– 456 Ray ABC

– 789 Mei XYZ

• DEPARTMENT (DID, DName)

– ABC Sales

– DEF Mfg

– XYZ Acct
• DID would be a FK in EMPLOYEE and the PK in DEPARTMENT

Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

Step 1 - Multiply the Tables:

• 123 Doe ABC ABC Sales

• 123 Doe ABC DEF Mfg

• 123 Doe ABC XYX Acct

• 456 Ray ABC ABC Sales

• 456 Ray ABC DEF Mfg

• 456 Ray ABC XYZ Acct

• 789 Mei XYZ ABC Sales

• 789 Mei XYZ DEF Mfg

• 789 Mei XYZ XYZ Acct

Step 2 - Eliminate rows where EMPLOYEE.DID not

equal DEPARTMENT.DID

• 123 Doe ABC Sales

• 456 Ray ABC Sales

• 789 Mei XYZ Acct

• We have supplemented the employee data

with the the department names form the

department table !

Class Exercise

Find the names of the

salespersons who sold 500 or

more of any product

Write the relational algebra

expression

Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

Find the Names of Products Sold

• Product names are in P, and products sold are in
SP !!!

• T1 = JOIN SP WITH P where SP [PID] = P
[PID];

• T2 = T1 [PName];

• or in one statement:

• T = (JOIN SP WITH P where SP [PID] = P
[PID]) [PName];

• Other syntax:

T = SP JOIN P (SP [PID] = P [PID]) [PName];

– T = SP JOIN (SP [PID] = P [PID]) P [PName] ;

Find the products sold and quantities

sold for salespersons in Copenhagen.

• T1 = S [SID] WHERE City = Copenhagen;

• T2 = JOIN T1 WITH SP WHERE T1

[SID] = SP [SID] ;

• or

• T1 = JOIN SP with S [SID, City] where SP

[SID] = S [SID];

• T2 = T1 WHERE City = “Copenhagen”

• Do selections before joins !

Outer Joins

• Previous joins were inner joins

• If a join condition condition preserves

all rows in the first table, but places

nulls in the columns for the second

table where no matching row exists,

then it is called a left outer join [left is

default]

• If a join condition preserves all rows in the

second table, but places nulls in the

columns for the first table where no

matching row exists, then it is called a right

outer join

• If a join condition preserves all rows in both

tables, it is called a full outer join

• Outer joins are very important in accounting

and other business applications since they

give a full picture of the business situation

and can be used for audit reports

Joins

Outer join example:

• T1:

– a1, b1

– a2, b3

• T2:

– b1, c1

– b2, c2

• Join T1 with T2 where T1.col2 = T2.col1:

– a1, b1, b1, c1

– a1, b1, b2, c2 eliminate since T1.column 2

– a2, b3, b1, c1 not equal T2.column1

– a2, b3, b2, c2

• Resulting table from equi join:

– a1, b1, b1, c1

• For a natural join, the identical columns are

removed also:

– a1, b1, c1

• For left outer join must preserve all rows in first

table:

– a1, b1, c1

– a2, b3, null

Class exercise: find the right outer natural join

of EMPLOYEE with DEPARTMENT

{show resulting table data}

• EMPLOYEE (EID, EName, DID)

– 123 Doe ABC

– 456 Ray ABC

– 789 Mei XYZ

• DEPARTMENT (DID, DName)

– ABC Sales

– DEF Mfg

– XYZ Acct

Copyright Dan Brandon, PhD, PMP

Christian Brothers University

Don’t look ahead !

• 123 Doe ABC Sales

• 456 Ray ABC Sales

• 789 Mei XYZ Acct

• NULL NULL DEF Mfg

Copyright Dan Brandon, PhD,PMP Christian Brothers University

References

• E. F. Codd, “A Relational Model of Data for Large Shared

Databanks,” Communications of the ACM, 1970

• Birth of the Relational Model

• Intelligent Enterprise, October 1998, p 61, ff

• Fundamentals of Relational Data Organization

• Byte, November 1981, p 48, ff

• Inside Relational Databases with Examples in Access by Mark
Whitehorn and Bill Marklyn

• Beginning Relational Data Modeling, Second Edition by
Sharon Allen and Evan Terry

• Understanding Relational Database Query Languages by

Dietrich; ISBN: 0-13-028652-4

• Relational Database Design and Implementation, Third
Edition: Clearly Explained 3e (Morgan Kaufmann Series in
Data Management Systems) by Jan L. Harrington

Homework

• Textbook Chapter Three

• Review Questions 1 thru 6

• Textbook Problems 1 thru 4

• Project overview due:

– Topic

– Problem Statement

– Major Entities

