The Relational Model

Relational Model

« Model of the logical database structure, not
physical structure

* The relational model is a table level model, as
opposed to the E-R model which is an entity
level model

 Relational Model has advantages over other

data models in terms of:
— Flexibility of queries
— Non procedural programming (queries without
programming)
— Consistency of queries and algebra

Original Reference

 E. F. Codd, “A Relational
Model of Data for Large
Shared Databanks,”
Communications of the
ACM, 1970

<4 1951: The Uni- 1961: Chxles 1968: IEM ol- 1976: Heozywel
VEC U525 mag- Bachman al GE [ers e IMS ships Multics
nelic lape as duvenss the lis! hierarchice Relational Data 1983:
wedl 3 ponched database man- dakabase for Store. tha frst BM in:
cands lor dala agement sys- aystem/360 oommers rela- troduces
S0r20e, tem, 105, mainfzames, thinal database, DB2.
1956: IEM n 1969: Edgar » = 1973: Cullnans, 1979: Omacla
troduces fisst F."Ted" Codd 9 l2d by John J. infroduces the
magnetic hard Irverts thareia Cullinane, skips first commercial
disk drive In tonal datahase, IDM3, 2 reswark: SOL relational
its Mogel 205 model databasafor database man-
RAMAL, IBM manirames. agement system.

RS fll’Pbllj @
& el

SQI. Server 2008

SOLw 2

Database Usage

W
!

Oracle

&
=

SQL Server
MySQL

DB2

¥
W

Informix

Sybase ASE %o

Sybase IQ 14% 59%

Teradata 11% 13% 61%

0% 10% 20% 30% 40% 50% 60% T0% B80% 0% 100%

B Currently Deployed OPlan to Deploy Next Year
B Plan to Deploy but Not in the Next Year BNo Plans to Deploy

Copyright Dan Brandon, PhD,PMP Christian Brothers University

Peak Database Throughput

[JSP Net Application, PC Magazine]

Oracle 91 — 629 pages/second
MySQL 4.0 — 608 pages/second

IBM DB2 Universal Database 7.2 — 494
pages/second

Sybase Adaptive Server Enterprise 12.5 —
476 pages/second

Microsoft SQL Server 2000/SP2 — 209

pages/second
Highly problem dependent !

Terminology

* “When I use a word, “ Humpty
Dumpty said, In a rather scornful tone,
“It means just what I choose it to mean
- neither more nor less.”

* “The question is,” said Alice,

“Whether you can make words mean
so many different things.”

4% in Wonderland".

* “The question is,” said Humpty o5t iy
Dumpty, “Wthh lS tO be maSl‘er - W L not always seen that way.
That’s all.”

Terminology (con’t)

Relational

Relation
Tuple

Attribute

Degree or arity

cardinality

Object Programming

Oriented
Object Type File

Object Record
Mapping to an Field
Instance of

another type

of properties # of fields

of mappings # of records

User

Table
Row

Column

of columns

of rows

The “relation” 1s a Mathematical Table

Attribute

) S

Relation

Copyright Dan Brandon, PhD,PMP Christian Brothers University

Relational Model

« Model of the logical database
structure, not physical structure

« ER models (discussed later In
course) can be converted to
relational models

 Relational Model has advantages
over other data models in terms of
flexibility of queries, non
procedural programming, and
consistency of queries and algebra

//upload.wikimedia.org/wikipedia/commons/7/7c/Relational_database_terms.svg

Advantages of Relational Model

Represents relationships by values not pointers

Allows non-procedural access to information
(indicate what information you want, not how to
get It)

Additional relationships added relatively easily

Sound mathematical foundation to avoid
Inconsistencies and irregularities

Uses “indexes” for speed of access, and indexes
can be dynamically created (and cached) from data
tables

Relations and Relationships
(foreign keys used for relationships)

Genres

® GenrelD MovieActor T
GenreMame % MowielD Actors
% ActorlD
% ActorlD
FirstMame
A LastMame
MovieGenres Natienality

% MovielD Birth
% GenrelD

Directors
% DirectorlD

% MovielD FirstMame
DirectorlD LastMame

GenrelD Maticnality
Title Birth
Releaselear

Rating

Plat

Mawvielength

Copyright Dan Brandon, PhD,PMP Christian Brothers University

Relation

« A relation is a two dimensional table that holds
Information about something (entity or object)

* The “relational” 1n relational database comes from the
word relation, not relationships

« But not just any kind of table:

— The cells of the table must be single valued; no repeating
groups. The single value need not be of fixed length

— All of the entries in a column must be of the same, and
satisfy the domain of that column. A column has a unique
name

— No two rows may be the same

Characteristics of Tables

A table 1s perceived as a two-dimensional structure composed of rows and
columns.

Each table row (tuple) represents a single entity occurrence within the entity
set.

Each table column represents an attribute, and each column has a distinct
name.

Each intersection of a row and column represents a single data value.

All values 1n a column must conform to the same data format.

Each column has a specific range of values known as the attribute domain.
The order of the rows and columns 1s immaterial to the DBMS.

Each table must have an attribute or combination of attributes that uniquely
identifies each row.

Copyright Dan Brandon, PhD,PMP Christian Brothers University

Publisher

Pl

P1

P2

Due
DE(E

null

4/1/96
5/2/96
null
null
3/27/96
null

Relation (Table)
STUDENT (Name, Stuc

Key (mathematically)

A group of one or more attributes that uniquely
Identifies a row

e |n the relation:

— STUDENT (Studentld, Major, Name, Address,...)
— Studentld is a key

* |n the relation:
— GRADE (Studentld, Course, Grade)

— (Studentld, Course) Is the key [assuming a student only
completes the same course once, or only the last taking
of the course is retained in the database]

Unique Key

The notion of key described on the previous slide
IS the mathematical term

In practice this is usually called a unique key

There may be other keys that are not unique (and
these could be used as indexes)

There may be more than one unigue key
(candidate keys), but only one is the main table
key (or primary key)

Primary Key

In an employee table, the primary key would probably be
employeeNumber; another unique key would be social
security number (a unique index would probably be set up
on social security number to avoid duplicates)

A table can only have one “primary key”
A non-unique key may be “name”

In some terminology the word primary has to do with the
primary physical organization of the records

Usually the table’s primary organization (hashed or b-tree
data structure) Is consistent with the main unique key

Foreign Key

A Foreign Key In one table iIs a value that is the
primary (main) key of another table

A table can have none, one, or many foreign keys

The value of Isbn in the COPY table is a foreign
key, since the value of Isbn is the primary key In
the TITLE table

The value of Studentld in the COPY table is a
foreign key, since the value of Studentld is the
primary key of the STUDENT table

b I e [ISBN/Copy # is PK, Student & ISBN are FK’s]

Title Coy

Isbn-T1
Isbn-T1
Isbn-T1
Isbn-T2
Isbn-T2
Isbn-T3
Isbn-T3

VEND_CODE is FK In the PRODUCT Table

Table name: PRODUCT Database name: Ch03 SaleCo

Primary key: PROD_CODE
Foreign key: VEND_CODE
PROD_CODE PROD_DESCRIPT
001278-AB Claw hammer
Sledge hammer, 16-b. head
Rat-tail file
Steel tape, 12-1t. length

gy O

VEND_AREACODE

603

Table name: VENDOR
Primary key: VEND_CODE
Foreign key: none

615
608

sthur Jones

5 Henry Ortozo

Copyright Dan Brandon, PhD,PMP Christian Brothers University

Types of Keys

 Several different types of keys are used in the relational model
* Some authors and RDBMS’s may have slightly differing definitions

Composite key: key that is composed of more than one attribute
Key attribute: attribute that is a part of a key

Superkey: key that can uniquely identify any row in the table
Candidate key: minimal superkey

Primary key: A candidate key selected to uniquely identify all other attribute values in any
given row; cannot contain null entries

Entity integrity: condition in which each row in the table has its own unique identity
 All of the values in the primary key column must be unique
» No key attribute in the primary key can contain a null
Null: absence of any data value
« Unknown attribute value, known but missing attribute value, or inapplicable condition

Referential integrity: every reference to an entity instance by another entity instance is
valid

Foreign key: primary key of one table that has been placed into another table to create a
common attribute

Secondary key (index): key used strictly for data retrieval purposes

Indexes

» Used to quickly and logically access rows in
a table

— Index key: index’s reference point that leads to
data location identified by the key

— Unique index: index key can have only one
pointer value (row) associated with it

— Non-unique index: index key can have multiple
rows associated with it

» Each index Is associated with only one table
— An Index can have multiple attributes

RDBMS Integrity

Requirement

Purpose

Example

Requirement

Purpose

Example

All primary Key entries are unique, and no part of a primary key may be null.

Each row will have a unique identity, and foreign key values can properly reference
primary key values.

No invoice can have a duplicate number, nor can it be null; in short, all invoices are
uniquely identified by their invoice number.

A foreign key may have either a null entry, as long as it is not a part of its table’s primary
key, or an entry that matches the primary key value in a table to which it is related (every
non-null foreign key value must reference an existing primary key value).

It is possible for an attribute not to have a corresponding value, but it will be impossible to
have an invalid entry; the enforcement of the referential integrity rule makes it impossible
to delete a row in one table whose primary key has mandatory matching foreign key values
in another table.

A customer might not yet have an assigned sales representative (number), but it will be
impossible to have an invalid sales representative (number).

Codd’s Relational Rules
Pkt |

Information All information 1n a relational database must be logically represented as
column values in rows within tables.

Guaranteed access Every value in a table 1s guaranteed to be accessible through a combination
of table name, primary key value, and column name.

Systematic treatment of nulls Nulls must be represented and treated in a systematic way, independent of
data type.

Dynamic online catalog based The metadata must be stored and managed as ordinary data—that 15 in tables
on the relational model within the database; such data must be available to authorized users using the
standard database relational language.

Comprehensive data The relational database may support many languages; however, 1t must

sublanguage support one well-defined, declarative language as well as data definition,
view definition, data manipulation (interactive and by program), integrity
constraints, authorization, and transaction management (begin, commut,
and rollback).

View updating Any view that 1s theoretically updatable must be updatable through the
system.

High-level insert, update, and delete The database must support set-level inserts, updates, and deletes.

Codd’s Relational Rules (con’t)
I

Physical data independence Application programs and ad hoc facilities are logically unaffected when
physical access methods or storage structures are changed.
Logical data independence Application programs and ad hoc facilities are logically unaffected when

changes are made to the table structures that preserve the origmal table
values (changing order of columns or inserting columns).

Integrity independence All relational integrity constramnts must be definable in the relational
language and stored in the system catalog, not at the application level.

Distribution independence The end users and application programs are unaware of and unaffected by the
data location (distributed vs. local databases).

Nonsubversion If the system supports low-level access to the data, users must not be allowed
to bypass the integrity rules of the database.

Rule zero All preceding rules are based on the notion that to be considered relational, a
database must use its relational facilities exclusively for management.

Relational Algebra

Relational Database Data Manipulation

e Procedural
— Relational Algebra

* Non-procedural
— Query by Example (QBE) - [ie Access]
— Relational Calculus (Predicate Calculus)
— Transform Languages (ie SQL)

« Command Line

« Within programming language (embedded or call
level)

Relational Calculus

« Non — Procedural (indicates properties
of data to be retrieved):

— Tuple Relational Calculus — integrates
over rows [basic SQL]

— Domain Relational Calculus — integrates
over domain (columns) [SQL subqueries]

* Implemented in SQL

Relational Model

* S (SID, SName, City)
* P (PID, PName, Size, Price)
o SP (SlD, PlD, Qty) Intersection Table

Foreign Keys ?

Sl
S2
S4
S5

Salesperson Table (S)

SID

Snhame
Peterson

Olsen
Hansen

Jensen

City
Aarhus
Copenhagen

Odense

Copenhagen

1
03
i
5
g

Product Table (P)
PID PName Size

Shirt
Trousers
Socks
Blouse
Blouse

0
5
I
0
8

Price
50

90
20
50
60

S2
S2
S4
S4
SO
S5
S5
SO
S

SP Table (Intersection Table)

SID

P1
P3
P5
P8
P1
P3
P4
P5
P8

PID

200
100
200
100
50

500
800
500
100

Qty

Relational Algebra

 Relational algebra combines relations by
means of operators to form new relations
which, combined with other relations by
means of a further operator, can form new
relations (in other words relational operators
can be nested)

 Relational Algebra is a procedural approach to
data manipulation

 Understanding Relational Algebra makes it
easier to see what how SQL performs its work

Eight Operators

Projection Difference
Selection * Product
Union * Division
|Intersection e JoiIn

The result of an operation is always a relation, even if
it 1s a “singleton” or “null relation” !

Projection G

« A vertical section of a table; the
projection statement selects some
columns from a table and creates a new
table whose rows only contain the
desired columns

o T =S][City],
* OR “Which cities have salespersons ?”

Table: T (note that T contains one less row
than S because there are two salespersons in
Copenhagen)

City
Aarhus

Copenhagen
Odense

Projection Examples

Original table New table
| P_CC ESCRIPT| PRICE | PRICE |

5.6 £26

PROJECT PRICE yields

.15 — 2515
10,33 1099

192 1972
147 147

iy ==

34.99

PROJECT P_DESCRIPT and PRICE yields P DESCRIPT| PRICE

—

Hy baltery
100, tll_:|i|
Powrerdrll

PROJECT P_CODE and PRICE yields

Selection

e A selection i1s a subset of the set of the
rows In a table - sometimes called
“restriction”

 The selection 1s made on the basis of
the contents of one or more columns

 T=8S WHERE City = “Copenhagen”;
 OR

Which salespersons are based in Copenhagen?

Which salespersons are based in Copenhagen?

SID Sname City

S2 Olsen Copenhagen

S5 Jensen Copenhagen

Selection Examples

Original table New table
P_CODE | P_DESCRIPT]

s el
Hox Fan 099 23458 Box Fan

) l..’:llf'l‘.-, 1.92 21334¢ lhi”*‘"‘:,‘
':l;i:l‘".'w‘,~' bulb | ¢‘..1' y '_nu._‘" 100V bulb
Powerdril 34.99 311452 Powerdnll

SELECT only PRICE less than $2.00 yields

—.‘

SELECT only P_CODE = 311452 yields P CODE | P DESCRIPT| PRICE

(W=t L

—

Combine Selection and Projection

« What quantity of product P1 has
been sold by salesperson S5 ?
— T =SP[Qty] WHERE PID = P1 and SID = S5;
* The answer Is the single column,
single row table of 50.

Union

e The union of two tables iIs a new table
containing the rows of both tables; duplicate
rows are eliminated

* The two tables In the union have to have the
same columns (same number of attributes,
and attributes in corresponding columns
have same domain)

* Similar to the logical “OR”

Which of the salespersons are either In
Copenhagen or have sold some P8 ?

 T1 =S [SID] WHERE City =
Copenhagen;

« T2 =SP [SID] WHERE PID = PS§;

e T=T1UNION T2; (or T1+T2)

e Or In one statement:

* T=(S[SID] WHERE City = “Copenhagen™)
UNION (SP[SID] WHERE PID = P8);

« Note that T1 and T2 both have just one column of salespersons

11

SID
52

SO

T2

SID
S4

SO

T (Union of T1 and T2)

SID
S2

S4
SO

Union Example

N

Intersection At

* The Intersection of two tables Is a
new table containing only those
entries that are members of both
tables

* The tables must have the same
columns

» Stmilar to the logical “AND”

Which salespersons are both In
Copenhagen and have sold P8 ?

e Using T1 and T2 from the
last example

T =T1INTERSECT T2;

e The answer IS the table
with only S5 In It

Liv
CCCCC

ein
hhhhh

S4

Intersect Example

STU FNAWE] STULNANE | INTERSECT ENP FNANE i STU FNANE| STU LIAKE

l;wo_-'|’|'1»_4 ’ 01185 }'HY f

Jalle 'tHrI‘." "vv'u"‘ l1am
Pé".#r Kobinson h.'n'i-* |
Fraokin ~~ Johnson Susan

Mar LOpez

Difference et

* The difference of two tables Is
the set of entitles that are
members of the first table but
not of the second

» Both tables have the same
columns

Which salespersons are in Copenhagen
but have not sold any P8 ?

e Using T1 and T2 from the
last example

e T=T1-T2;

e The answer IS the table
with only S2 In it

T=T1-T2=[S2]

e 11 (in Copenhagen) ® T2 (sold P8)
—S2 —34
—S5 —S5

The difference between knowing your shit

and hnuwmg yuu're shit,

Beorge
Jalle
Pelel
Franklin
Mar

Difference Example

STU FNAVE| STV NAME | DIFFERENCE [Eyp FIANE] ENP LNANE | yields STUFNANE] ST DWME |

Jongs Frankiin LOpe2 baorge Jones

Sl Wil Tumer i o
Robinson Franklin Johnson Pefer Robingon

Susan . 8IS fv'j!l [L_;l:g;

Product (Cartesian)

* The product of two tables Is a new table
containing rows corresponding to all
combinatorial possibilities of the rows of
the two tables

 Similar to matrix multiplication, except
concatenate rows Instead of arithmetic
multiplication

R

Product Example:

e Table 1 has two rows the first of which contains
al and b1, the second of which contains a2 and b2

—al bl
— a2 b2

e Table 2 has two rows the first of which contains
cl and d1, the second of which contains c2 and d2

—cl dl
— C2 d2

al bl X cl dil
a2 b2 c2 d2

 The product of the two tables
contains 4 rows:

—al, bl cl, dl

—al, bl, c2, d2
—a2, b2, cl, dl b

—a2, b2, c2, d2

Resulting table size...

« Multiply Rows: If the first table in a product
has N rows and the second table in a
product has M rows, the product will have

N times M rows
« Add Columns: If the first table in a product
nas X columns and the second table in a
oroduct has Y columns, the product will
nave X plus Y columns

What are all possible combinations
of Salespersons and Products ?

 T=MULTIPLY S|[SID] WITH
P [PID]; (or S[SID] x P[PID])

 The result Is a table with two
columns and twenty rows (for
each combination of SID[4] and
PID [5])

Product Example

AJ

[P_CODE [P DESCRIT| PRICE | PRODUCT [STORE[ASLE [SHELF] yields

12345 Flashhoht A7

wamp

Flashhght
O ballery Lamp
100W bule |4/ 2357 Lamp

- .)
Flweioe || Lamp

' Dattery
S battery
o battery
Powerdnl
Pawardn
Powerdnll
10UV bule
{COW bult
00V bulk

DIVISION

Division involves a dividend, divisor, remainder,
and quotient:
— DIVIDEND / DIVISOR = QUOTIENT

The dividend table will have M + N columns

The divisor table will have N columns with the
same columns as N columns of the dividend

The quotient will have M columns
The remainder will have M + N columns
Most RDMS still do not support division

Division (con’t)

 Division Is the inverse of multiplication

* The table formed by the union of
— the quotient multiplied by the divisor
— and the remainder

* Is the original table

Subject

Which salesperson has sold
some of all products?

T =DIVIDE SP BY P [PID] ;
The result (quotient) is only S5

Another interpretation of division Is: Which sets
of salesman rows (M=1) of the dividend (SP) have
the attributes of the divisor (1ie which S’s in SP are
related to all rows in the P table)

Used for complex pattern matching searches:
“Who has blond hair, medium build, owns a red
corvette, ...”

Divisor
P(PID)

J U U U
coO O1 &~ W

S2
S2
S4
S4

Remainder - SP rows not
containing quotient (S5)

SID

P1
P3
PS
P3

PID

[{ I
-

Divide Example

CUS_CODE DIVIDE _P_CODE] : W

 Ajoin usually* requires two tables to have

one or more columns in common (normally
PK in one table and FK in other !)

e The columns in common between the two
tables are related by a “join condition”

« The two tables are multiplied together,
then all rows not matching the join
condition are eliminated

*The “cross join” is the same as the Cartesian product

* |If the jJoin condition Is the equality
between the columns in common, the
join is called an equijoin

» If one of the two common columns In
an equijoin is eliminated, then it is
called a natural join (the most common
kind of join which removes the
redundancy)

Join example:

e T1:

—al, bl

typically the b column here iIs a foreign key

— a2, b2
e T2:

— bl, cl

typically the b column here iIs a primary key

— b2, c2
e Join T1with T2 where T1.col2 = T2.coll:

al, bl, bl, cl_
al, bl, b2, c2

az,b2,bl,cl |

a2, b2, b2, c2

eliminate since T1.column 2
not equal T2.columnl

 Resulting table from equi join:
—al, bl, bl, cl
—az2, b2, b2, c2

 For a natural join, the identical
columns are removed also:
—al, bl, cl
—az2, b2, c2

» \What we have done here Is to supplement
T1 with information from T2,

corresponding to matching b (foreign key to
primary key)

Class Exercise: Find natural join
of these two tables on DID:

« EMPLOYEE (EID, EName, DID)

— 123 Doe ABC
— 456 Ray ABC
— 789 Mei XYZ

« DEPARTMENT (DID, DName)
— ABC Sales
— DEF Mfqg

— XY/~ ACCt
« DID would be a FK in EMPLOYEE and the PK in DEPARTMENT

Don’t look ahead !

\,

Copyright Dan Brandon, PhD, PMP

Step 1 - Multiply the Tables:

123
123
123
456
456
456
789
789
789

Doe
Doe
Doe
Ray
Ray
Ray
Mel
Mel
Mel

ABC
ABC
ABC
ABC
ABC
ABC
XYZ
XYZ
XYZ

ABC
DEF
XY X
ABC
DEF
XYZ
ABC
DEF
) 4

Sales
Mfg
Acct
Sales
Mfqg
Acct
Sales
Mfg
Acct

Step 2 - Eliminate rows where EMPLOYEE.DID not
equal DEPARTMENT.DID

e 123 Doe ABC Sales
« 456 Ray ABC Sales
¢ /89 Mei XYZ Acct

» We have supplemented the employee data
with the the department names form the
department table !

Class Exercise

Find the names of the
salespersons who sold 500 or
more of any product

Write the relational algebra
expression

Salesperson Table (S) SP Table (Intersection Table)
SID Sname City SID PID Qty
S2 200
1 Peterson Aarhus 2
zzzzz

eeeeee

eeeeee

Don’t look ahead !

\,

Copyright Dan Brandon, PhD, PMP

Find the Names of Products Sold

Product names are in P, and products sold are In
SP 111

T1= JOIN SP WITH P where SP [PID] =P
[PID],

T2 =T1 [PName];

Or In one statement:

T = (JOIN SP WITH P where SP [PID] =P
[PID]) [PName];

Other syntax:
T = SP JOIN P (SP [PID] = P [PID]) [PName];
— T = SPJOIN (SP [PID] = P [PID]) P [PName] ;

Find the products sold and quantities
sold for salespersons in Copenhagen.

« T1= S[SID] WHERE City = Copenhagen;

« T2=JOINT1 WITH SP WHERE T1
[SID] = SP [SID] ;

« Or

« T1=JOIN SP with S [SID, City] where SP
[SID] =S [SID];

T2 =T1 WHERE City = “Copenhagen”

Do selections before joins |

Outer Joins

 Previous joins were Inner joins

» If a join condition condition preserves
all rows In the first table, but places
nulls in the columns for the second
table where no matching row exists,
then it Is called a left outer join [left is
default]

* |f a join condition preserves all rows in the
second table, but places nulls in the
columns for the first table where no
matching row exists, then it is called a right
outer join

« If a join condition preserves all rows In both
tables, it is called a full outer join

 Quter joins are very important in accounting
and other business applications since they
give a full picture of the business situation
and can be used for audit reports

LEFT JOIN FULL OUTER JOIN

@ @

INNER JOIN RIGHT JOIN

() (@

Outer join example:

e T1:
—al, bl
— a2, b3
¢ T2:
— bl, cl
— b2, c2

LEFT JOIN

-

e Join T1 with T2 where T1.col2 = T2.coll:

—al, bl, bl, cl_
—al, bl, b2, c2
— a2, b3, bl cl

— a2, b3,b2,c2 |

eliminate since T1.column 2
not equal T2.columnl

 Resulting table from equi join:
—al, bl, bl, cl

 For a natural join, the identical columns are
removed also:
—al, bl, cl

 For left outer join must preserve all rows in first
table:

—al bl cl LEFT JOIN
— a2, b3, null

Class exercise: find the right outer natural join
of EMPLOYEE with DEPARTMENT
{show resulting table data}

- EMPLOYEE (EID, EName, DID)

— 123 Doe ABC
— 456 Ray ABC
— 789 \Y[])Q P4
« DEPARTMENT (DID, DName)
— ABC Sales RIGHT JOIN

_ DEF Mfg / =
~ XYZ Acct
N

Don’t look ahead !

\,

Copyright Dan Brandon, PhD, PMP

123 Doe ABC Sales
456 Ray ABC Sales
789 Mel XYZ Acct
NULL NULL DEF Mfg

References

E. F. Codd, “A Relational Model of Data for Large Shared
Databanks,” Communications of the ACM, 1970
Birth of the Relational Model

« Intelligent Enterprise, October 1998, p 61, ff
Fundamentals of Relational Data Organization

» Byte, November 1981, p 48, ff

Inside Relational Databases with Examples in Access by Mark
Whitehorn and Bill Marklyn

Beginning Relational Data Modeling, Second Edition by
Sharon Allen and Evan Terry

Understanding Relational Database Query Languages by
Dietrich; ISBN: 0-13-028652-4

Relational Database Design and Implementation, Third
Edition: Clearly Explained 3e (Morgan Kaufmann Series in
Data Management Systems) by Jan L. Harrington

Copyright Dan Brandon, PhD,PMP Christian Brothers University

Homework

» Textbook Chapter Three

e Review Questions 1 thru 6
» Textbook Problems 1 thru 4
* Project overview due:

—Topic
—Problem Statement
—Major Entities

