
Internet Programming

SmartPhone Apps

Dan Brandon, Ph.D., PMP

1Copyright Dan Brandon, PhD, PMP

Mobile Phones

Copyright – Dan Brandon

Mobile phones are now the

most common device used

for browsing the web!

Mobile Application Development

◼Lots of jobs - 34%

growth rate for

next 10 years

◼Starting salaries

of $90,000 thru

$130,000

Copyright – Dan Brandon

User Experience: Desktop vs Mobile

4

Smartphone Key Features

◼ Portability

◼ Phone/SMS (text messaging)

◼ Screen Size

◼ Touch Screen

◼ Look & Feel

◼ Button Size & Behavior

◼ Icon Size and Behavior

◼ Portrait and Landscape Modes

◼ Multimedia: camera, microphone, video-cam

◼ GPS & Geolocation

◼ Sensors: three-axis gyro, accelerometer, proximity sensor, ambient light sensor
5

Screen Size

◼ The technology discussed here for smartphones also

applies to other portable smart devices such as:

◼ iPads at 9.7in

◼ Samsung's Galaxy Note

◼ Amazon's Kindle

◼ Dell Streak

◼ iPad Mini

◼ iPhone 4 screen is 3.6 in (diagonal)

◼ iPhone 5 screen is 4 in (diagonal)

◼ iPhone 6 screen is 4.7 in (diagonal)

◼ iPhone 6+,7 screen is 5.5 in (diagonal)

◼ iPhone X is 5.8 in (diagonal)
6

SmartPhone Development Choices

▪ Vendor Proprietary API/SDK

▪ Apple (iOS)

▪ Android

▪ Blackberry

▪ Others

▪ Open Source HTML5, JavaScript, CSS

▪ Manually

▪ Using a UI foundation (i.e. jQuery Mobile)

▪ WYSIWYG (i.e. Yapp, VIX, etc.)

▪ Build prototype with HTML5 et. al. , then convert to

native API via PhoneGap
7

Android API/SDK

[Java plus C/C++ libraries]

8

iOS Platform/SDK
[Objective-C]

9

//upload.wikimedia.org/wikipedia/en/7/7d/IPhone_SDK_-_New_Project.png

iOS Swift

10

PhoneGap

11

Advantages of HTML5 Based

SmartPhone Apps

◼ Open Source

◼ Runs on all (most all) platforms

◼ Don’t have to learn native language, API, and

IDE

◼ Don’t have to contend with Apple’s App Store

(iTunes) to get your work released

◼ Much easier software support and

maintenance

12

Responsive Design Theory

◼ The three primary components of responsive

design theory identified by Ethan Marcotte are:

◼ flexible layout so that the page layout

automatically adjusts to screens of different

widths

◼ responsive images that rescale based on the

size of the viewing device

◼ media queries that determine the properties of

the device rendering the page so that

appropriate designs can be delivered to specific

devices

Copyright Dan Brandon, PhD, PMP

13

Amazon.com in PC Browser

14

Amazon.com on SmartPhone

15

SW Air in PC Browser

16

SW Air on SmartPhone

17

Testing Mobile Apps

◼Using specific smartphones and/or

tablets

◼Safari browser set for iPhone user

agent

◼Smartphone simulators/emulators

◼Remote labs

◼http://www.deviceanywhere.com

◼http://www.perfectmobile.com 18

http://www.deviceanywhere.com/
http://www.perfectmobile.com/

Setting User Agent in Safari
[select advanced preferences]

19

Setting User Agent in Safari (con’t)
[Need to restore down button after page loads]

20

http://www.mobilexweb.com/emulators

21

iphonetester.com

22

testiphone.com

23

HTML5 Layout Control –

Structural Elements

◼ HTML5 defines new semantic structural elements that

facilitate page layout that traditionally was

accomplished with DIV’s (and SPAN) but provide

more semantics

◼ Header

◼ Nav

◼ Article & Section

◼ Footer

24

Example HTML5 File

◼ <html lang="en">

◼ <head>

◼ <meta http-equiv="Content-Type" content="text/html; charset=us-ascii">

◼ </head>

◼ <body>

◼ <header>

◼ <h1 align="center">PAGE HEADER</h1>

◼ </header>

◼ <nav>

◼

◼ Link 1

◼ Link 2

◼ Link 3

◼ Link 4

◼ Link 5

◼ Link 6

◼

◼ </nav>

◼ <article>

◼ <h2 align="center">MAIN CONTENT</h2>

◼ </article>

◼ <footer>

◼ <h3 align="center">Page Footer</h3>

◼ </footer>

◼ </body>

◼ </html>

25

Try this !

Example HTML5 File Rendered

26

CSS Simulation File

◼For browsers that do not support these

structural tags, one can simulate that

using CSS

◼The CSS file to “simulate” HTML5

styling is:

◼ header, nav, footer, article {display:block}

◼ nav {float:left; width:20%}

◼ article {float:right; width:79%}

◼ footer {clear:both}
27

Example HTML5 File

◼ <html lang="en">

◼ <head>

◼ <meta http-equiv="Content-Type" content="text/html; charset=us-ascii">

◼ <link rel="stylesheet" type="text/css" href="html5_css.css">

◼ </head>

◼ <body>

◼ <header>

◼ <h1 align="center">PAGE HEADER</h1>

◼ </header>

◼ <nav>

◼

◼ Link 1

◼ Link 2

◼ Link 3

◼ Link 4

◼ Link 5

◼ Link 6

◼

◼ </nav>

◼ <article>

◼ <h2 align="center">MAIN CONTENT</h2>

◼ </article>

◼ <footer>

◼ <h3 align="center">Page Footer</h3>

◼ </footer>

◼ </body>

◼ </html>

28

IE and CSS Elements

◼ The previous CSS file to simulate new

HTML5 styling will work in all browsers except

older IE

◼ For IE before version 9, the following

JavaScript will also need to be added:

◼ document.createElement('header');

◼ document.createElement('nav');

◼ document.createElement('article');

◼ document.createElement('footer');

◼ And JavaScript will need to enabled
29

SmartPhone App Implementation

◼ One can build totally separate PC web Apps

and Smartphone Apps

◼ And then based upon either the screen size or

the “user agent” JavaScript variable (or

another browser/platform detection

mechanism) – switch the URL

◼ Or one can use the same content for both

platforms (PC and Smartphone) and then use

CSS and/or JavaScript to just switch the

applied style sheets

30

Working with DOM Objects

◼ <!DOCTYPE html>

◼ <html>

◼ <head>

◼ <meta charset="utf-8">

◼ <title>DOM Example Without jQuery</title>

◼ <script type="text/javascript">

◼ function changeText () {

◼ document.getElementById('greeting').innerHTML="Hello !";

◼ }

◼ </script>

◼ </head>

◼ <body>

◼ <h1 id="greeting" onclick="changeText()">Click Here</h1>

◼ </body>

◼ </html>

31

Using jQuery Library

◼ <!DOCTYPE html>

◼ <html>

◼ <head>

◼ <meta charset="utf-8">

◼ <title>DOM Example Without jQuery</title>

◼ <script type="text/javascript" src="jquery.js"></script>

◼ <script type="text/javascript">

◼ function changeText () {

◼ $('#greeting').text('Hello !');

◼ }

◼ </script>

◼ </head>

◼ <body>

◼ <h1 id="greeting" onclick="changeText()">Click Here</h1>

◼ </body>

◼ </html>
32

Media Queries or Qualifiers

◼ Media queries associate a style sheet or style

rule with a specific device or list of device

features

◼ Create a media query within an HTML file, by

adding a media attribute to either the link or

style element in the document head:
media=“devices”

where devices is a comma-separated list of

supported media types associated with a

specified style sheet

33

Media Types

34

Media Queries (con’t)

◼ Media queries can be used to associate

specific style rules with specific devices using

the following:

@media devices {

style rules

}

where devices are supported media types

and style rules are the style rules

associated with those devices

35

Media Queries (con’t)

◼ To target a device based on its features, add

the feature and its value to the media

attribute using the syntax:

media=“devices and|or (feature:value)”

where feature is the name of a media

feature and value is the feature’s value

◼ The and and or keywords are used to create

media queries that involve different devices

or features, or combinations of both

◼ Or once can link to a specific style sheet for

that media type 36

Media Queries (con’t)

37

Stylesheet Media Qualifier

◼ <HTML>

◼ <HEAD>

◼ <TITLE>Link to a target medium</TITLE>

◼ <LINK REL="stylesheet" TYPE="text/css“

◼ MEDIA="print, handheld" HREF=“xxxxxx.css">

◼ </HEAD>

◼ <BODY>

◼ <P>The body...

◼ </BODY>

◼ </HTML>

38

Media Queries (con’t)

◼ The mobile first principle is one in which the

overall page design starts with base styles

that apply to all devices followed by style

rules specific to mobile devices

◼ Tablet styles are generally applied when the

screen width is 481 pixels or greater

◼ Desktop styles build upon the tablet styles

when the screen width exceeds 768 pixels

◼ As the screen width increases, more features

found in smaller devices are added or

replaced
Copyright Dan Brandon, PhD, PMP

39

Media Queries (con’t)

40

Media Queries (con’t)

◼ <link rel="stylesheet" media="screen and (min-

device-width: 800px)" href="800.css" />

◼ The above code will apply the 800.css styling to the document

only if the device viewing it has a width of 800px or wider

◼ This is the device width, not the current width of the browser

window

◼ On the iPhone that means 480px (or 980px for iPad)

◼ MacBook Pro is going to return 1920px for the device width

◼ The actual browser window may be a portion of that at any

moment

◼ The device width is quite useful when dealing with mobile

devices where the browser is probably 100% of the screen

whenever in use, but less useful in laptop/desktop browsers

41

Viewport

◼ Mobile browsers may render pages

in a virtual "window" (the viewport),

usually wider than the screen, so

they don't need to squeeze every

page layout into a tiny window (which

would break many non-mobile-

optimized sites) - users can pan and

zoom to see different areas of the

page

◼ Mobile Safari introduced the

"viewport meta tag" to let web

developers control the viewport's

size and scale; many other mobile

browsers now support this tag; if not

supported, it is just ignored
42

Viewport (con’t)

◼ <meta name="viewport" content="width=device-

width, initial-scale=1, maximum-scale=1">

◼ The initial-scale property controls the zoom level

when the page is first loaded, the maximum-

scale, minimum-scale, and user-scalable

properties control how users are allowed to

zoom the page in or out

◼ Mobile devices have two types of viewports:
◼ Visual viewport – displays the web page content that fits within

a mobile screen

◼ Layout viewport – contains the entire content of the page, some

of which may be hidden from the user 43

Viewport (con’t)

44

Viewport (con’t)

◼ We can also specify stylesheets that are only to

be used when the viewport is between two

different pixel sizes:

◼ <link rel='stylesheet' media='screen and (min-

width: 701px) and (max-width: 900px)'

href='css/medium.css' />

◼ This stylesheet will only take affect when the

current browser window is between 701 and 900

pixels in width

45

Example of Mobile Styles

46

Example of Tablet Styles

47

Example of Desktop Styles

48

Example of Desktop Styles (con’t)

49

Smartphone Methodology Based

Upon Generic Page Design

50

Header

Nav

Footer

SidebarArticle

Smartphone Viewport &

Stylesheets
◼ Meta tag to tell the iPhone browser (Safari) that

viewport is only 480 (otherwise Safari would assume

980, and page would be loaded to small)

◼ <meta name="viewport" content="user-

scalable=no, width=device-width" />

◼ Separate stylesheets for desktop and iPhone:

◼ <link rel="stylesheet" type="text/css"

href="iphone.css" media="only screen and (max-

width: 480px)" />

◼ <link rel="stylesheet" type="text/css"

href="desktop.css" media="screen and (min-width:

481px)" />
51

Example Page HTML

◼ <!DOCTYPE html>

◼ <html>

◼ <head>

◼ <title>John Doe Consulting</title>

◼ <meta charset="utf-8">

◼ <meta name="viewport" content="user-scalable=no, width=device-width" />

◼ <link rel="stylesheet" type="text/css" href="iphone.css" media="only screen and (max-width: 480px)" />

◼ <link rel="stylesheet" type="text/css" href="desktop.css" media="screen and (min-width: 481px)" />

◼ <script type="text/javascript" src="jquery.js"></script>

◼ <script type="text/javascript" src="iphone.js"></script>

◼ </head>

◼ <body>

◼ <container>

◼ <header>

◼ <h1 align="center">John Doe Consulting</h1>

◼ </header>

◼ <nav>

◼

◼ Consulting

◼ Support

◼ Development

◼ Client List

◼ Testamonials

◼ Products

◼

◼ </nav>

◼ <article>

◼ <h2 align="center">About John Doe</h2>

◼ <p align="center">John Doe is a web developer and consultant. His consulting firm, John Doe Consulting, Inc., has been developing successful web sites in many industries for over 10 years, including mobile applications.</p>

◼ </article>

◼ <sidebar>

◼ <p style=text-align:center></p>

◼ <p>Jonh Doe Contact Info</p>

◼

◼ Phone: 999-111-2222

◼ Mobile: 888-222-3333

◼ Email: jdoe12409@yahoo.com

◼

◼ </sidebar>

◼ <footer>

◼ <table width=100%>

◼ <tr>

◼ <td align="center" width="33%">Services</td>

◼ <td align="center" width="33%">About</td>

◼ <td align="center">Blog</td>

◼ </tr>

◼ </table>

◼ <p class="subtle" align="center">John Doe Consulting, Inc.</p>

◼ </footer>

◼ </container>

◼ </body>

◼ </html> 52

Example Page HTML - Header

◼ <head>

◼ <title>John Doe Consulting</title>

◼ <meta charset="utf-8">

◼ <meta name="viewport" content="user-scalable=no, width=device-width" />

◼ <link rel="stylesheet" type="text/css" href="iphone.css" media="only screen and

(max-width: 480px)" />

◼ <link rel="stylesheet" type="text/css" href="desktop.css" media="screen and

(min-width: 481px)" />

◼ <script type="text/javascript" src="jquery.js"></script>

◼ <script type="text/javascript" src="iphone.js"></script>

◼ </head>

53

Desktop Stylesheet

◼ body {font: 125% "Lucida Grande", "Trebuchet MS", Verdana, sans-serif;}

◼ header, nav, footer, article, sidebar {display:block;}

◼ nav {float:left; width:20%; border:5px solid gray; background-color:tan; padding:3px; margin:3px;}

◼ sidebar {float:right; border:5px solid gray; background-color:tan; padding:3px; margin:3px;}

◼ article {float:left; width:50%; padding:2px; margin:2px;}

◼ footer {clear:both;background-color:moccasin;}

54

Rendered Page on Desktop

55

iPhone Stylesheet – first cut

◼ body {background-color:#ddd; color:#222;

font-family:Helvetica; font-size:14px;

margin:0; padding:0; }

◼ nav {padding: 5px;}

◼ article {padding:5px;}

◼ sidebar {padding:5px;}

◼ footer {display:none;}

56

Rendered Page on iPhone

57

Improving Smartphone Look & Feel

◼Buttons to expand/contract detail

◼Aesthetics

◼Detecting user agent, etc.

◼Dynamically changing styles

◼Using other smartphone capabilities

58

JavaScript for Button (iPhone.js)

◼ if (window.innerWidth && window.innerWidth <= 480 {

◼ $(document).ready(function(){

◼ $('nav ul').addClass('hide');

◼ $('header').append('<div class="leftButton"

onclick="toggleMenu()">Menu</div>');

◼ });

◼ function toggleMenu() {

◼ $('nav ul').toggleClass('hide');

◼ $('header .leftButton').toggleClass('pressed');

◼ }

◼ }
59

Webkit

60

http://qooxdoo.org/documentation/general/webkit_css_styles

61

iPhone Stylesheet – polished
[making an iPhone App look like one]

◼ body {background-color:#ddd; color:#222; font-family:Helvetica; font-size:14px; margin:0; padding:0; }

◼ header {background-color:#ccc; border-bottom:1px solid #666; color:#222; display:block; font-size:20px;

font-weight:bold;padding:10px 0; text-align:center; text-decoration:none;}

◼ header {text-shadow:0px 1px 0px #fff; background-image:-webkit-gradient(linear, left top, left bottom,

from(#ccc), to(#999));}

◼ header div.leftButton {position: absolute; top:7px; left:6px; height: 30px; font-weight:bold; text-align:center;

color:white; text-shadow:rgba(0,0,0,0.6) 0px -1px 0px; line-height:28px; border-width:0 8px 0 8px; -webkit-

border-image:url(button.png) 0 8 0 8;}

◼ header div.pressed {-webkit-border-image:url(button_clicked.png) 0 8 0 8;}

◼ nav {padding:5px;}

◼ nav ul {list-style:none; margin:10px; padding:0;}

◼ nav ul li a {background-color:#FFFFFF; border:1px solid #999999; color:#222222; display:block; font-

size:17px; font-weight:bold; margin-bottom:-1px; padding:12px 10px; text-decoration:none;}

◼ nav ul li:first-child a {-webkit-border-top-left-radius:8px; -webkit-border-top-right-radius:8px;}

◼ nav ul li:last-child a {-webkit-border-bottom-left-radius:8px; -webkit-border-bottom-right-radius:8px;}

◼ nav ul.hide {display: none;}

◼ article {padding:5px;}

◼ sidebar {padding:5px;}

◼ footer a {background-color:#FFFFFF; border:1px solid #999999; color:#222222; display:block; font-

size:17px; font-weight:bold; margin-bottom:-1px; padding:12px 10px; text-decoration:none;}

62

Rendered Page on iPhone

63

Rendered Page on iPhone
[after hitting menu button]

64

Checking User Agent

◼ Use a smartphone detection JavaScript library

◼ Or code one yourself:
◼ var deviceIphone = "iphone";

◼ var deviceIpod = "ipod";

◼ var uagent = navigator.userAgent.toLowerCase();

◼ function DetectIphone() {

◼ if (uagent.search(deviceIphone) > -1) return true; else return false; }

◼ function DetectIpod() {

◼ if (uagent.search(deviceIpod) > -1) return true; else return false; }

◼ function DetectIphoneOrIpod() {

◼ if (DetectIphone()) return true; else if (DetectIpod()) return true; else return false; }

◼ Then use in iPhone.js
◼ if (window.innerWidth && window.innerWidth <= 480 || DetectSmartphone()

== true) {

65

Dynamically Switching Style

Sheets
◼ function loadjscssfile (filename, filetype){

◼ if (filetype=="js"){ //if filename is a external JavaScript file

◼ var fileref=document.createElement('script')

◼ fileref.setAttribute("type","text/javascript")

◼ fileref.setAttribute("src", filename)

◼ }

◼ else if (filetype=="css"){ //if filename is an external CSS file

◼ var fileref=document.createElement("link")

◼ fileref.setAttribute("rel", "stylesheet")

◼ fileref.setAttribute("type", "text/css")

◼ fileref.setAttribute("href", filename)

◼ }

◼ if (typeof fileref!="undefined")

◼ document.getElementsByTagName("head")[0].appendChild(fileref)

◼ }

◼ function removejscssfile (filename, filetype){

◼ var targetelement=(filetype=="js")? "script" : (filetype=="css")? "link" : "none" //determine element type to create nodelist

from

◼ var targetattr=(filetype=="js")? "src" : (filetype=="css")? "href" : "none" //determine corresponding attribute to test for

◼ var allsuspects=document.getElementsByTagName(targetelement)

◼ for (var i=allsuspects.length; i>=0; i--){ //search backwards within nodelist for matching elements to remove

◼ if (allsuspects[i] && allsuspects[i].getAttribute(targetattr)!=null &&

allsuspects[i].getAttribute(targetattr).indexOf(filename)!=-1)

◼ allsuspects[i].parentNode.removeChild(allsuspects[i]) //remove element by calling parentNode.removeChild()

◼ }

◼ }

66

Dynamically Switching Style

Sheets
◼ if (window.innerWidth && window.innerWidth <= 480 || DetectSmartphone() == true) {

◼ loadjscssfile("iphone.css", "css")

◼ …

◼ }else {

◼ loadjscssfile("desktop.css", "css")

◼ }

◼ window.onresize = function () {

◼ if (window.innerWidth && window.innerWidth <= 480 || DetectSmartphone() == true) {

◼ removejscssfile("desktop.css", "css");

◼ loadjscssfile("iphone.css", "css")

◼ … }

◼ else {

◼ removejscssfile("iphone.css", "css")

◼ loadjscssfile("desktop.css", "css")

◼ …

◼ }

◼ }

67

My Website in Browser

68

My Website in SmartPhone
[facstaff.cbu.edu/dbrandon]

69

facstaff.cbu.edu/dbrandon

My Website in SmartPhone
[after hitting “courses” button]

70

Course Syllabus

71

Course Syllabus
[after expanding “content” button]

72

jQuery Mobile

Dan Brandon, Ph.D., PMP
Christian Brothers University

Memphis, TN USA

73

jQuery Mobile (jQM)

74

jQuery Mobile Definition

◼A unified user interface system

across all popular mobile device

platforms

◼Built on jQuery and jQuery UI

foundation

◼Flexible and easy themeable

design

75

jQuery Mobile Features

◼ “Canned” but parameter driven CSS and Javascript with

image resources

◼ Automatic AJAX

◼ Progressive enhancement (graceful degradation for less

capable browsers)

◼ Accessibility support (where such support is provided by

underlying browser and OS such as in iOS)

◼ iOS – Setings→General→Accessibility→Activate

VoiceOver

◼ Works with PhoneGap (converts WebApp into native

App)

◼ Supported by latest Dreamweaver release
76

jQuery Mobile Features (con’t)

◼ Relatively platform independent for

smartphones and tablets (targets “touch”

devices)

◼ 3000+ mobile devices

◼ 50+ browsers

◼ Best for smartphone/tablet apps only – not

content to be delivered to both traditional

desktops and smartphones

◼ Allows use of basic smartphone features →

◼ Not for all mobile apps such as games
77

SmartPhones and Tablets
[some mobile smart devices do not have phones]

◼ Multitasking OS

◼ HTML5 Browser

◼ Wireless LAN (WLAN or WiFi)

◼ 3G and/or 4G Connection

◼ Touch Screen

◼ Music Player

◼ GPS

◼ Digital Compass

◼ Still and Video Camera

◼ Bluetooth

◼ Accelerometer

◼ Gyroscope

78

Types of Mobile WebApps

◼Accessed from the mobile device web

browser

◼ Installed as a full-screen webapp

◼As an installed webabb via a package

officially implemented by vendors

(“widget”)

◼As an installed webapp embedded in a

native application (“hybrid”) – typically via

PhoneGap
79

jQM Required Resources

◼ Resource options:

◼ Download and host on your server (necessary

if using PhoneGap)

◼ Link to content delivery network

(code.jquery.com)

◼ Resource files:

◼ jQuery core JavaScript file

◼ jQuery Mobile core JavaScript file

◼ jQuery Mobile core CSS file

◼ jQuery Mobile theme CSS file (optional)
80

jQuery and jQuery Mobile File Links
[“min” versions have whitespace removed]

◼ <link rel="stylesheet"

href="http://code.jquery.com/mobile/1.0.1/jquer

y.mobile-1.0.1.min.css" />

◼ <script

◼ src="http://code.jquery.com/jquery-

1.6.4.min.js">

◼ </script>

◼ <script

◼ src="http://code.jquery.com/mobile/1.0.1/jquery.

mobile-1.0.1.min.js">

◼ </script> 81

*** These may not be latest versions. ***

jQM Architecture Concepts

◼ Role – the architectural purpose of an HTML div

◼ <div data-role=“xxx”> {HTML5 custom data attributes}

◼ Page – a visible screen of content; in jQM a “div”

element with the specific “role” of a page; an

HTML file can contain multiple pages

◼ Themes – defines visual appearance; a group of

definitions for layout, styles, and colors

◼ There is a default theme, and one can create their

own custom themes

◼ Themes have multiple color swatch options,

defined by a letter 82

Default Color Swatch Designations

◼ a – black

◼ Highest level of visual priority

◼ b – blue

◼ Secondary level of priority

◼ c – silver

◼ Baseline level

◼ d – gray

◼ Alternate secondary level

◼ e – yellow

◼ Accent
83

jQM DIV Roles

◼ page

◼ header

◼ footer

◼ content

◼ navbar

◼ button

◼ listview

◼ listdivider

◼ controlgroup

◼ collapsible

◼ collapsible-set

◼ fieldcontain

◼ dialog

◼ slider

◼ nojs

84

Example jQM Simple Page Layout
[header has left, right, and center areas; with left and right reserved for buttons]

85

Header

Content

Footer

HTML5 jQuery Mobile Skeleton File
[viewport with scale of 1, so that page fits exactly onto device visible area]

◼ <!DOCTYPE html>

◼ <HTML>

◼ <HEAD>

◼ <meta charset="utf-8">

◼ <title>…</title>

◼ <link rel="stylesheet" href="http://code.jquery.com/mobile/1.0.1/jquery.mobile-1.0.1.min.css" />

◼ <script src="http://code.jquery.com/jquery-1.6.4.min.js"></script>

◼ <script src="http://code.jquery.com/mobile/1.0.1/jquery.mobile-1.0.1.min.js"></script>

◼ <meta name="viewport" content="width=device-width, initial-scale=1">

◼ </HEAD>

◼ <BODY>

◼ <div data-role="page" data-theme="a">

◼ <div data-role="header">…</div>

◼ <div data-role="content">…</div>

◼ <div data-role="footer">…</div>

◼ </div>

◼ </BODY>

◼ </HTML>

86

Trivial jQM Example
[only BODY shown]

◼ <BODY>

◼ <div data-role="page" data-theme="a">

◼ <div data-role="header">

◼ <h1>Header for Test1</H1>

◼ </div>

◼ <div data-role="content">

◼ <h2>Content for Test1</H2>

◼ </div>

◼ <div data-role="footer">

◼ <h2>Footer for Test1</H2>

◼ </div>

◼ </div>

◼ </BODY>
87

88

jQM Linking

◼ Linking types (the first two use AJAX):

◼ Link to another page in same HTML file

◼ Link to page in another jQM HTML file in the same

domain

◼ Links to non jQM HTML files or files outside of domain

◼ Mobile special links (SmartPhone integration)

◼ jQM automatically handles linking “transitions”

◼ Default is “slide” – others are up, down, pop, fade, and flip

◼ Also works with browser’s and SmartPhone’s

back buttons
89

Two Page jQM HTML File with Linking
◼ <BODY>

◼ <div data-role="page" data-theme="a" id="page1">

◼ <div data-role="header">

◼ <h1>Header for Page1</H1>

◼ </div>

◼ <div data-role="content">

◼ <h2>Content for Page1</H2>

◼ <h3 align="center">Go To Second Page</h3>

◼ </div>

◼ <div data-role="footer">

◼ <h2>Footer for Page1</H2>

◼ </div>

◼ </div>

◼ <div data-role="page" data-theme="a" id="page2“ data-title="Test2, Page2">

◼ <div data-role="header">

◼ <h1>Header for Page2</H1>

◼ </div>

◼ <div data-role="content">

◼ <h2>Content for Page2</H2>

◼ <h3 align="center">Go Back To First Page</h3>

◼ </div>

◼ <div data-role="footer">

◼ <h2>Footer for Page2</H2>

◼ </div>

◼ </div>

◼ </BODY>

90

91

Other Comon jQM Constructs

◼ Dialog page (modal pop up)

◼ Lists & separators

◼ Images and thumbnails

◼ Form elements

◼ Buttons, textbox, textarea, checkbox, radio buttons, menus,

sliders, labels, toggles, file upload, etc.

◼ Toolbars

◼ Navigation Bars

◼ Columns and Grids

◼ Buttons (inline, grouped)

◼ Icons
92

Joe Doe Investigations

93

<BODY>

<div data-role="page" data-theme="a" id="page1">

<div data-role="header">

<p style=text-align:center>

</div>

<div data-role="content">

<ul data-role="listview" data-inset="true" data-divider-theme="d">

<li data-role="list-divider">Links

My Services

My Rates

My Staff

Call ME

Text ME

Email ME

FaceTime ME

</div>

<div data-role="footer">

<h4>John Doe Investigations</h4>

</div>

</div>

Joe Doe Investigations – Page 1

◼ <BODY>

◼ <div data-role="page" data-theme="a" id="page1">

◼ <div data-role="header">

◼ <p style=text-align:center>

◼ </div>

◼ <div data-role="content">

◼ <ul data-role="listview" data-inset="true" data-divider-theme="d">

◼ <li data-role="list-divider">Links

◼ My Services

◼ My Rates

◼ My Staff

◼ Call ME

◼ Text ME

◼ Email ME

◼ FaceTime ME

◼

◼ </div>

◼ <div data-role="footer">

◼ <h4>John Doe Investigations</h4>

◼ </div>

◼ </div>
94

Joe Doe Investigations – Page 2

◼ <div data-role="page" data-add-back-btn="true" data-theme="a" id="page2" data-

title="JDC, Services">

◼ <div data-role="header">

◼ <p style=text-align:center>

◼ </div>

◼ <div data-role="content">

◼ <h2>My Services</H2>

◼ <h3>

◼ Cheating Spouse

◼ Disobedient Child

◼ Disobedient Pet

◼ Employee Absence

◼ Stalker

◼ Fraudulent Injury Claims

◼ </h3>

◼ </div>

◼ <div data-role="footer">

◼ <h4>John Doe Investigations</h4>

◼ </div>

◼ </div>

95

96

Joe Doe Investigations – Page 3

◼ <div data-role="page" data-add-back-btn="true" data-theme="a" id="page3"

data-title="JDC, Rates">

◼ <div data-role="header">

◼ <p style=text-align:center><img src="JDC2.jpg" alt="JDC

Logo">

◼ </div>

◼ <div data-role="content">

◼ <h2>My Rates</H2>

◼ <h3>

◼ Daily - $500/day

◼ Hourly - $80/hour

◼ Travel - $1/mile

◼ Injury - Three times medical costs

◼ </h3>

◼ </div>

◼ <div data-role="footer">

◼ <h4>John Doe Investigations</h4>

◼ </div>

◼ </div>

97

98

Joe Doe Investigations – Page 4

◼ <div data-role="page" data-add-back-btn="true" data-theme="a" id="page4"

data-title="JDC, Testimonial">

◼ <div data-role="header">

◼ <p style=text-align:center><img src="JDC2.jpg" alt="JDC

Logo">

◼ </div>

◼ <div data-role="content">

◼ <h2 align="center">My Staff</H2>

◼

◼ <h4>Ima Handful</h4>

◼ <br clear="all"><P><img align="left" src="boris.jpg"

alt="Boris" hspace=20>

◼ <h4>Boris Nutcraker</h4>

◼ </div>

◼ <div data-role="footer">

◼ <h4>John Doe Investigations</h4>

◼ </div>

◼ </div>
99

100

iCBU

Student Project

Example

Current CBU

Mobile Website

iCBU Project Goals

◼Research other campus mobile web

Apps

◼Take advantage of unique features of

smartphones (phone calls, text

messages, GPS, camera, etc.)

◼Emphasize the mobile capabilities that

would be most desirable and most

used from a student’s perspective

iCBU

Opening

Page

iCBU Panic

Button

The “panic button” calls

campus security and

transmits the caller’s

location (GPS if enabled

or cell tower if not); then

allows a voice call or text

message.

iCBU Café

Menu

The “café menu button”

shows what is being

served for the current day

(or next day if accessed

after 8pm) in the main

CBU cafeteria.

iCBU Buc

Card Button

The “buc card” button

allows the student to see

the balance on their Buc

Card (with the option to

store the login info on the

smartphone). Currently

students do not have the

ability to determine their

Buc Card balance online.

iCBU

Parking

Button
The “park button” allows

students to see an up to

date photo of the main

student parking area. It

would be possible via a

camera mounted on top of

the new science building

with a “frame grab” each

minute.

iCBU Mail

Button

The gmail button goes

directly to the students

CBU web email account

(with the option to store

the logon info on the

smartphone).

iCBU

Campus

Map

The campus map button

opens an interactive map

that allows navigation

and zoom plus labeling.

If GPS is enabled, there

is a “you are here”

blinking star.

iCBU Quick

Links

The “quick links button”

would show the links that

a student would most

want to access from a

mobile device. Some such

links are shown here.

iCBU Phone

Numbers

This directory page

would allow a student to

quickly find and auto

dial key CBU phone

numbers.

Other iCBU Main Buttons

◼Academic Calendar showing key

dates: add, drop, withdrawal, etc.

◼Campus Events

◼Current gas prices at area service

stations

◼Sports schedules and results

◼Area shopping “specials”

Mobile Development Frameworks

◼ There is a whole class of mobile development

frameworks that allows you to code mobile apps using

HTML, CSS, and JavaScript, as well as your favorite

JS libraries (i.e. jQueryMobile)

◼ The frameworks then package your app for selected

platforms so that it has access to device-level APIs that

regular web applications would otherwise not:
◼ Apache Cordova/PhoneGap

◼ Appcelerator Titanium

◼ Adobe AIR

◼ Sencha Touch

◼ A lot of extra bells and whistles in addition to access to

device-level APIs
114

http://www.htmlgoodies.com/beyond/mobile/pros-and-cons-of-cross-platform-mobile-development-frameworks.html
http://www.htmlgoodies.com/beyond/mobile/pros-and-cons-of-cross-platform-mobile-development-frameworks.html
http://www.htmlgoodies.com/beyond/mobile/evaluating-adobe-air-and-sencha-touch.html
http://www.htmlgoodies.com/beyond/mobile/evaluating-adobe-air-and-sencha-touch.html

App Inventor
[http://appinventor.mit.edu/explore/]

115

Appcelerator Titanium
[http://www.appcelerator.com/titanium/]

116

http://www.appcelerator.com/titanium/

PHP/Zend Based App System

117

Using Frameworks for Photos

◼ For example, most of these frameworks

have excellent documentation on how to

work with the smartphone camera without

having to worry about individual device

APIs

118

Photos via PhoneGap

◼ navigator.camera.getPicture(onSuccess, onFail, {

◼ quality: 50, destinationType:

Camera.DestinationType.DATA_URL

◼ });

◼ function onSuccess(imageData) {

◼ var image = document.getElementById('myImage');

◼ image.src = "data:image/jpeg;base64," + imageData;

◼ }

◼ function onFail(message) {

◼ alert('Failed because: ' + message); }

119

Photos via Sencha Touch

◼ Ext.device.Camera.capture({

◼ success: function(image) {

◼ imageView.setSrc(image); },

◼ quality: 75,

◼ width: 200,

◼ height: 200,

◼ destination: 'data‘

◼ });

120

AMP

◼ The AMP Project is an open-source initiative aiming to make the web better for all by

speeding up the downloading of static content

◼ AMP enables web experiences that are consistently fast, beautiful and high-performing

across distribution platforms. AMP formerly stood for “Accelerated Mobile Pages”, but

now works completely across desktop and mobile

◼ The official AMP plugin for WordPress supports fully integrated AMP publishing for

WordPress sites, with robust capabilities and granular publisher controls.

◼ Features and capabilities provided by the plugin include:

◼ AMP-first Experiences: enabling full-site AMP experiences without sacrificing the flexibility of

the platform or the fidelity of content.

◼ Core Theme Support: enabling AMP compatibility for all core themes, from Twenty Ten all the

way through Twenty Twenty.

◼ Compatibility Tool: when automatic conversion of markup to AMP is not possible, debug

AMP validation errors with detailed information including the invalid markup and the specific

components responsible on site (e.g theme, plugin, embed); validation errors are shown

contextually with their respective blocks in the editor.

◼ CSS Tree Shaking: automatically remove the majority of unused CSS to bring the total under

AMP’s 75KB limit; when the total after tree shaking is still over this limit, prioritization is used so

that the all-important theme stylesheet important is retained, leaving less important ones to be

excluded (e.g. print styles).

Copyright Dan Brandon, PhD, PMP

121

AMP (con’t)

Copyright Dan Brandon, PhD, PMP

122

10 Common Mistakes to Avoid When Building

Your First Mobile App
By Chris Preimesberger, eWeek

◼ Don't Bring Conventional 'Application Thinking'

to Your App Project

◼ As Gartner Research has noted, "apps" and

"applications" are not the same thing

◼ Applications are monsters prized for their long

lists of capabilities, while apps are valued for

doing a few things well—and for their

purposefulness

◼ The temptation is to try to bring the do-it-all

standard of applications to the do-a-few-things-

really-well standard of an app 123

http://www.eweek.com/cp/bio/Chris-Preimesberger/

Best in Breed Mobile Sites

124

Best in Breed Mobile Sites

125

Best in Breed Mobile Sites

126

Best in Breed Mobile Sites

127

Best in Breed Mobile Sites

128

References

◼Murach's JavaScript and jQuery by Zak

Ruvalcaba , Mary Delamater , et al.

◼ jQuery Mobile Web Development

Essentials by Raymond

Camden and Andy Matthews

◼HTML5 Mobile Websites:

Turbocharging HTML5 with jQuery

Mobile, Sencha Touch, and Other

Frameworks by Matthew David

Copyright Dan Brandon, PhD, PMP

129

Homework

◼Textbook Chapter 5

◼Optional, extra credit:

◼Modify your project 3 web page to

work well on both desktops and

smartphones

◼Or make a second smartphone

version of your project website

◼Appendices →
130

MOBILE DEVELOPMENT

GUIDELINES

Appendix

Copyright Dan Brandon, PhD, PMP

131

Mobile Development Guidelines

◼ With the advent of mobile devices, a new industry came into existence. Mobile devices are now so

popular that many users no longer buy desktop or laptop computers. Advertisers, seeing the value

of this new medium are taking for advantage of it, offering products, games, apps and more. In this

article you’ll learn about 10 design practices for building mobile apps. These practices will help you

get the results you seek and also satisfy your customers.
◼

◼ Before You Begin, Consider Your Audience: Before you take any time to build an app, consider your audience. What do you hope to

achieve? How do you envision your audience using your app? These are important questions to consider up-front.

◼

◼ Check the App Stores: Many times people come up with a great idea for an app and start to brainstorm how to build it. There’s only one

problem. Despite how unique you might think your idea is, there’s an excellent chance that someone might have already built it, or

something similar to it. If that’s the case, you would be wasting a ton of time (and money). If an app already exists, you can use it as a

template to create your own product, or you might consider partnering with the creator(s) of that app and using it as part of your strategy.

◼

◼ Involve Potential Users in the Design Process: One danger of any design process is working only with your team and not involving the

end users at all. Then, when the design is done and is released to the public, some or many aspects of your design might not translate well

to the real world. To avoid this problem, involve potential end users in the design process and use their feedback to make changes as

necessary.

◼

◼ Create a Storyboard: The storyboard is one of the most important aspects of the design process. This is where you lay out the complete

functionality of your app on paper. If there are problems, you can resolve them at this stage. The storyboard allows you to plan out all

aspects of the design, including future components, such as plug-ins.

◼

◼ Make the App Easy to Understand: The app should be easy to understand with descriptions to accompany graphics (if necessary) and

additional instructions. One design flaw is relying too much on images to tell the tale. That’s a major error because users might not be able to

figure out the purpose of your app if you use a lot of graphics. Clear instructions are necessary.

132

Mobile Development Guidelines

(con’t)
◼ Avoid Overuse of Graphics and Animations: Both graphics and animations can add a nice “Wow” factor to your app but there’s a major

downside – slow loading times which translate into a poor user experience. Whenever possible, either avoid the use of bitmaps or

animations or limit their use to only essential features. And if you do use graphics, use vector graphics whenever possible. The files sizes

from these are much smaller, so they’ll load faster.

◼

◼ Consider the Sizes of Buttons and Icons: When working with a mobile interface, you have a limited amount of space and some

designers add too many buttons/icons. Another consideration is the size of the human finger tip. If the buttons/icons are too small, users

could make errors with selecting the wrong one. Likewise, if there’s not enough space between the buttons/icons, that can cause trouble as

well. If in doubt, test your layouts and get feedback.

◼

◼ Create a Core Application: This means taking the most important features and building those into a core application experience.

Additional functionality can be created by building plug-ins that can be purchased as necessary by the user. This avoids overloading the

core part of the app with too many features.

◼

◼ Create a Consistent Workflow: This translates into making sure the user experience remains the same on all platforms. If you change

that for each device, you’ll confuse and annoy your users.

◼

◼ Test the Design: With any design, this is the most important aspect. If you’ve been following the strategies listed in this article you’ll be

testing your app every step of the way. Still, it’s important to test the finished product and not only once but several times with different

users. If there are problems, fix them, then test the result again.

◼

◼ Conclusion

◼ As you can see, creating a mobile app requires a lot of strategic thinking before you even begin to build it. While it’s important to consider

the design, it’s more important to search the various app stores first, because someone may have built an app that’s very similar to what

you have in mind. If that’s the case, finding a way to work with the existing developers could be of great benefit, and not only to save on

development costs. If a business relationship isn’t possible, you still have access to an app that will offer you a template for your own

design.

133

7 Things You Must Avoid When

Designing Mobile Apps
◼ Coding Without a Plan: If you’re building an app from scratch, this is the most important step. If you code without a plan you could end up with a real mess.

Not only will the process take longer, it’s likely to be haphazard and expensive. To save yourself the grief, use a storyboard or some sort of flowchart system

where you build the entire application on paper, complete with diagrams if necessary. If problems are found, they can be addressed and resolved. And once

you’ve built the storyboard, you’ve built the app. All you need to do now is to write the code.

◼

◼ Not Considering the Screen Size: This is critical. The screen size varies with each mobile device so it’s important to take that into consideration when creating

your layouts and addressing scaling and display issues as they arise. When building an app, it’s very tempting to want to put a lot into the interface. That’s a bad

idea for several reasons: You could overload the user with too many buttons, the interface could be confusing, or it might take too long to load. Instead of trying

to put as much into the app as you can, it would be better to design a core system with the opportunity to add plug-ins later, if the user desires. This decreases

the overhead, it will make the design process easier, it will allow for scalability and ongoing profit streams after the fact.

◼

◼ Not Using Templates: Whenever possible make use of templates and code snippets when building your app. These will help you save time and reduce your

costs. Some programs, such as Adobe Dreamweaver and Topstyle 5, make use of templates.

◼

◼ Using Text in the Icons: Don’t use text in the icons. This is a mistake because both Google Play and Apple use text next to the icon, making it totally

unnecessary. Instead, concentrate on the design of the icons. Make sure the icons use smooth transitions and well-defined edges. You want them to stand out

from the background, not blend into it.

◼

◼ Not Informing the User When Programs are Loading: With many an app, sections of it might take time to load. In some cases, developers don’t let the user

know that this is happening. If that’s the case, it could create the following consequences: The user might be patient and wait for a few moments, but likely not.

Chances are, the user might think the app stopped functioning and restart it, or, if there’s still no response, quit the app and in an extreme case, uninstall it

completely. This is why it’s so important to let the user know when sections of an app are loading.

◼

◼ Not Paying Attention to the Different Operating Systems: When building apps, you’ll be working with different operating systems and you’ll have to design

your apps accordingly. With that in mind, the interface used for an iphone will be different from the layout for an Android. It’s really important to make sure that

your interface design matches the layout of the OS. If not, you run the risk of confusing and/or annoying the users, which will directly affect the adoption of your

app. In combination with this step, it’s important that you take color into consideration and make sure it fits the environment.

◼

◼ Not Testing the Interface before Deploying: This is one of the most common issues, not testing before deploying, yet it’s one of the most critical of steps. If

you miss an important part of a procedure, the entire process could fail. When you test, make sure you test your app with people who have never set eyes on

the product. That’s the true acid test. It’s here that you’ll find out whether you built the app in a way your target audience can use it, or if you missed/omitted

steps. Once you get the feedback, you’ll know whether all is well or whether some redesign work is necessary.

◼

◼ Conclusion

◼ When beginning any design process, it’s important to think about the end result, first. To ensure the success of your designs it’s important to involve users in the

design process. Nothing is worse than working in a vacuum. What you and your design team might think is fabulous could be a complete flop with the users, so

test early and test often.
134

http://www.adobe.com/ca/products/dreamweaver.html?kw=p&sdid=JRSIQ&skwcid=AL!3085!3!28745138203!e!!g!!adobe%20dreamweaver&ef_id=UZQB3wAABNr5Cnf2:20130811174609:s
http://topstyle4.com/

Programming and Documentation

◼ There isn´t a lot of difference between code such as HTML, PHP, or C; code is code

◼ A lot of the languages overlap and are actually very similar to each other in how they function

◼ Good code is, number one, documented so someone else could read it and know what it is

doing

◼ The documentation is often in the form of a WIKI

◼ Good structure means that an analyst has asked the client what they want, what they want to

achieve, then a business case is built around it

◼ After that the business case is broken down into its individual components, which then get

assigned to programmers for fulfillment

◼ The reason that most code is problematic, is that most documentation is horrible is because

no one likes documenting and they wait until the last minute to do so

◼ If you’re a programmer, all you want to do is program then move onto the next thing

◼ And if you’re a one-man programming shop you don’t need to explain to anyone else

◼ When you’re in an organization of 3, 5, or 10 people, inevitably some people will ask why you

programmed a certain way and the reality is that logic doesn’t flow the same way for

everybody

◼ If you ask people how to program something, you will get 10 different ways to get it done

◼ Elegant code is small; the fewer lines of code you can accomplish something in, the better
135

Programming …

◼ The next thing to remember is you should name your variables so you

know what they are, later

◼ And if you use layers you should label what each layer is for

◼ Good code should call the server as little as possible

◼ The more times you have to call the server the slower it goes, the slower

your SEO rank, and the lower the experience for the customers

◼ When using CSS it is better to have one main sheet and you reference

chunks of it, rather than one style sheet per page

◼ With a website that has thousands of pages that can be a bit crazy

◼ Again, every time you have a style sheet, you have to hit the server and

the server has to go back and forth

◼ If it’s the same style sheet for everybody you’ve already downloaded it

when you’ve hit the first page so if you hit the 5th, 20th, or 30th page within

that browsing session, it doesn’t have to download a different style sheet

136

Variable Type Limits (overflows)

◼ When building an HTML5 app it’s really important to consider the upper limit and to design your

variables accordingly

◼ When Youtube was built, they had an upper limit on the number of views they could show, which

topped out at around 2 billion; the video which finally “broke” Youtube was: “Gangnam Style (once

Gangnam Style surpassed that number, every view past that didn’t count)

◼ When you create variables, these can change from one value to another. When you create a

variable you set what that variable is going to be. If the variable is an integer it’s always going to be

a number, but an integer variable only holds so much space (such as 65535)

◼ That is the limit of an integer on certain platforms. If I had a value of 65536 or higher, that variable

explodes. This results in errors, crashing, security leaks, etc. A long integer (long int) is the same as

an integer, just bigger

◼ With the Youtube video, people could still see it but the counter stopped working. It’s exactly the

same as the Y2K bug

◼ ”Youtube never thought that anyone would get 2 billion views. So they had to swap out that integer

to the next largest number

◼ This is an example of HTML5 coding where it makes a difference as to where you put things and

how you place them. Back in the day when they were building Youtube they were thinking about

most ridiculous number of views that anything has ever gotten and they came up with 2 billion which

seemed crazy. And they thought that if they set the value to that, no one would ever hit it.”

◼ “Youtube was founded on February 14, 2005 and from an Internet perspective, it’s ancient; that’s

why one should design the workflow first, so you don’t fail when it comes time to execute and to

deliver to the customer what they want
137

http://techcrunch.com/2014/12/03/gangnam-style-has-been-viewed-so-many-times-it-broke-youtubes-code/

Session Management

◼ When programming a project, the first thing to do is figure out what each screen will look like, then

figure out how each screen flows to the next, and what data must be kept from one screen to another

◼ As an example, the login data has to be kept the entire time the session is running if you want to

access your account; it’s resource management, and HTML5 is still HTML, therefore there are a

limited number of sessions that you’re able to utilize while in the browser

◼ A session is an environment where you bring something across from one page to another

◼ HTML is stateless, it has no idea whether you’re connected or not, and a login is really important

◼ That session keeps your login from page to page; as an example is if I want to use HTML5 and log

into my bank account - if I don’t keep that session from one page to the next I’m going to have to log

in every time the screen changes

◼ To make it work you would use a security token and it keeps you logged in from one page to the next

and you want that session to be open for the entire time that you’re logged in; that’s also why those

sessions have timeouts (if you have ever logged into your account and you leave it for a bit and come

back you’ll see a message that your session has timed out)

◼ The session allows you to log-in, follows you around and then counts down from, say, 20 minutes and

if you’re no longer there after 20 minutes, it kicks you out

◼ If I access my bank account from the library I expect it to kill the session after I log out and if I forget,

to kill the session after a specified amount of time

◼ With a session, you have a limited amount of them and you don’t want to have too many open pages If you do

you have a lot of memory moving back and forth. If you’ve been working on a web page and it randomly crashes,

this is because you have too many things open. If your pages become sluggish, one way to fix the problem is to

close the browser and open it back up again. 138

Native Device Code

◼ There are some important differences between HTML5 and native code and when you

would want to use one or the other or both

◼ Native code allows you to touch all the resources of the phone, whereas HTML5 does not

◼ As an example, if I want to access the camera, one can’t on HTML5 but one can on the native app

◼ Any time you want to use any of the peripherals of the phone HTML5 may or may not have reach to it

but the native code always has reach to it

◼ For Android you would use Java and if you have an Android app

◼ If you’re working on the iPhone, that would be Xcode or Cocoa

◼ The main benefit to HTML5 is if I make it once, it works on everything, in contrast, native

code will only work on the platform you built it on

◼ It’s also important to realize there will be some instances where you will want to use both

HTML5 and native code to get the result you want.

◼ Let’s pretend we have an app that’s a game and we want to sell a sword

◼ We have to use the Apple or Google store to sell that within the app and make it happen

◼ Now, what does it cost one to give some guy a digital sword?; Nothing

◼ Let’s juxtapose that with an app that runs a café and I want to buy a sandwich

◼ There’s a cost for that sandwich and we have to manufacture those

◼ Apple and Google take 30% of whatever you sell through the app or Google Play store

◼ This is where you can use HTML5; if I have a pre-existing web store and it is not a digital product, my

HTML5 shopping cart will solve the problem and allow me to save that 30%

139

Apps Should Be Purposeful, Not

All-Purpose

◼ As a rough guide, make a list of desired

features for your app, then delete half of them

◼ For every feature you introduce into your

backlog, one must come out

◼ Finally, embrace the clarifying "Darwinism" of

app stores, which reward simple, purposeful

mobile experiences while ruthlessly

eliminating those with feature bloat

140

Do Not Fail to Build for Multiple

Platforms

◼ Failing to build for multiple platforms is no

less than a decision to ignore entire user

segments—justifiable in certain cases, but

probably not something to make a habit of

◼ Given the cross-platform app development

tools that exist, there's no reason not to build

apps optimized for a multi-OS, multi-device

world

141

No Apps Without APIs

◼ Good mobile apps are greedy things, hungry for all

manner of data from enterprise systems to SaaS

repositories, public sources such as social and the

looming Internet of things

◼ This is where application programming interfaces

(APIs) come in

◼ They give developers the simplified access to the

data and services needed to build amazing apps

◼ In fact, good mobile APIs act as a spur to innovation

◼ Think of them as Lego blocks: The better and more

varied the collection of blocks you make available,

the better and more creative the objects people build
142

Agile Isn't Fast Enough

◼ Building mobile apps well means optimizing your whole delivery

process around velocity

◼ Users expect a steady stream of feature updates, and each new

release of the operating systems will demand app updates even

if your users don't

◼ The only way is to embrace an MVP mindset—that is, "minimum

viable product“

◼ This is a strategy of putting the bare bones of necessary

functionality in front of users as quickly as possible

◼ Why? To get something in their hands fast and to improve the

app based on their actual use

◼ It's all about maximizing learning and minimizing resource

spend on the wrong things

143

MVP Approach Isn't Easy, but

Don't Ignore It

◼ The MVP approach is not easy; it depends on

employing analytics to find out how users are

actually working with an app

◼ It requires discipline and a willingness to

listen

◼ The key, covered in the next slide, is real-time

analytics that show you in an instant how

users are (or are not) using your app

144

MVP (con’t)

◼ Model–view–presenter (MVP) is where the model–

view–controller (MVC) architectural pattern derives

from, which is used mostly for building user interfaces

◼ In MVP the presenter assumes the functionality of the

"middle-man“

◼ In MVP, all presentation logic is pushed to the

presenter

145

http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://en.wikipedia.org/wiki/Architectural_pattern
http://en.wikipedia.org/wiki/User_interface

MVP (con’t)

◼ MVP is a user interface architectural pattern

engineered to facilitate automated unit testing and

improve the separation of concerns in presentation

logic:

◼ The model is an interface defining the data to be

displayed or otherwise acted upon in the user

interface

◼ The view is a passive interface that displays data

(the model) and routes user commands (events)

to the presenter to act upon that data

◼ The presenter acts upon the model and the view.

It retrieves data from repositories (the model), and

formats it for display in the view 146

http://en.wikipedia.org/wiki/Architectural_pattern_(computer_science)
http://en.wikipedia.org/wiki/Separation_of_concerns
http://en.wikipedia.org/wiki/Event_(computing)

MVC/MVP in Acclerator

147

You Can't Manage What You Can't

Measure
◼ So you've got your app out there in the wild and people seem to

like it, but do you really know how well it's doing?

◼ We're increasingly moving into a mobile world, and with mobile

comes a wealth of information unlike anything we've ever seen

before

◼ This includes variables like user location, device type, app

version, operating system and device orientation

◼ The trick is capturing this data, making quick sense of it and

using it to inform your next release

◼ Without analytics, you're flying blind and your mobile app plan

will amount to little more than dart-throwing

◼ The solution: Implement analytics with your first app, sort

through the findings and improve continually with each

subsequent release
148

You're Not Smarter Than Your

Users Today
◼ Users expect anytime access to elegant, easy-to-use

services, all running on their device of choice

◼ Too often businesses forget the demands of the end user

when creating their first mobile app

◼ Start building your app with the end user in mind and

optimize around "mobile moments“

◼ As Forrester Research calls them, to create targeted,

context-aware, anytime/anywhere experiences that

people love

◼ And don't stop once you've got your app up and running;

apps require ongoing care and feeding and dedicated

resources

◼ Think of your apps as products, not projects
149

Don't Just Talk About Security

◼ With countless devices working on multiple operating systems,

many levels of risk and vulnerabilities exist, increasing the

complexity and importance of securing mobile devices

◼ Appcelerator advocates six layers of mobile app security,

depending on the nature of the app:

◼ 1) authentication and authorization of users

◼ 2) encryption for data in motion

◼ 3) encryption for data at rest (client-side)

◼ 4) encryption for data at rest (server-side)

◼ 5) app code security via native source file encryption

◼ 6) security for app distribution and management

◼ Obviously not every layer applies to every app type, but failure

to consider each layer can lead to some unhappy headlines

150

FLEXBOX DESIGN

Appendix

Copyright Dan Brandon, PhD, PMP

151

FlexBox Design

◼ A flexible box or flexbox is a box containing

items whose sizes can shrink or grow to

match the boundaries of the box

◼ Items within a flexbox are laid out along a

main axis

◼ The main axis can point in either the

horizontal or vertical direction

◼ Cross axis is perpendicular to the main axis

and is used to define the height or width of

each item

Copyright Dan Brandon, PhD, PMP

152

FlexBox Design (con’t)

Copyright Dan Brandon, PhD, PMP

153

FlexBox Design (con’t)

◼ To define an element as a flexbox, apply either of the

following display styles:
display: flex;

or

display: inline-flex;

where a value of flex starts the flexbox on a new line and a value of

inline-flex keeps the flexbox in-line with its surrounding content

◼ The complete list of browser extensions that define a

flexbox is entered as:
display: -webkit-box;

display: -moz-box;

display: -ms-flexbox;

display: -webkit-flex:

display: flex;

Copyright Dan Brandon, PhD, PMP

154

FlexBox Design (con’t)

◼ By default, flexbox items are arranged horizontally

starting from the left and moving to the right

◼ The orientation of a flexbox can be changed using:
flex-direction: direction;

where direction is row (the default), column, row-reverse, or
column-reverse

◼ The row option in a flex-direction lays out the flex

items from left to right

◼ The column option in a flex-direction creates a vertical

layout starting from the top and moving downward

◼ The row-reverse and column-reverse options in a flex-

direction lay out the items bottom-to-top and right-to-left

respectively
Copyright Dan Brandon, PhD, PMP

155

FlexBox Design (con’t)

◼ Flex items try to fit within a single line, either

horizontally or vertically

◼ Flex items can wrap to a new line using the

following property:

flex-wrap: type;

where type is either:

◼ nowrap (default)

◼ wrap to wrap the flex items to a new line

◼ wrap-reverse to wrap flex items to a new line

starting in the opposite direction from the current

line
Copyright Dan Brandon, PhD, PMP

156

FlexBox Design (con’t)

Copyright Dan Brandon, PhD, PMP

157

FlexBox Design (con’t)

◼ The flex items are determined by three properties:

◼ base size

◼ growth value

◼ shrink value

◼ The basis size defines the initial size of the item before

the browser attempts to fit it to the flexbox

◼ The basis size is set using the following:
flex-basis: size;

where size is one of the CSS units of measurement, which sets

the initial size of the flex item based on its content or the value of its

width or height property

◼ For example:

aside {flex-basis: 200px;}

Copyright Dan Brandon, PhD, PMP

158

FlexBox Design (con’t)

◼ The rate at which a flex item grows from its

basis size is determined by the flex-grow

property
flex-grow: value;

where value is a non-negative value that

expresses the growth of the flex item relative

to the growth of other items in the flexbox

◼ The default flex-grow value is 0, which is

equivalent to the flex item remaining at its

basis size

Copyright Dan Brandon, PhD, PMP

159

FlexBox Design (con’t)

Copyright Dan Brandon, PhD, PMP

160

FlexBox Design (con’t)

◼ The following style rule creates a layout for

navigation list in which each list item is

assigned an equal size and grows at the

same rate

nav ul {

display: flex;

}

nav ul li {

flex-basis: 0px;

flex-grow: 1;

}

Copyright Dan Brandon, PhD, PMP

161

FlexBox Design (con’t)

◼ When the flexbox size falls below the total

space allotted to its flex items:

◼ Two possibilities occur depending on whether

the flexbox is defined to wrap its contents to a

new line

◼ First, if the flexbox-wrap property is set to

wrap, one or more of the flex items will be

shifted to a new line and expanded to fill in

the available space on that line

Copyright Dan Brandon, PhD, PMP

162

FlexBox Design (con’t)

Copyright Dan Brandon, PhD, PMP

163

FlexBox Design (con’t)

◼ Second, if the flexbox does not wrap to a new line as it is

resized, then the flex items will continue to shrink, still

sharing the same row or column

◼ The rate at which flexboxes shrink below their basis size

is given by the following property:

flex-shrink: value;

where value is a non-negative value that expresses the

shrink rate of the flex item relative to the shrinkage of the

other items in the flexbox

◼ The default flex-shrink value is 1

◼ If the flex-shrink value is set to 0, then the flex item will

not shrink below its basis
Copyright Dan Brandon, PhD, PMP

164

FlexBox Design (con’t)

◼ The syntax for the flex property is:
flex: grow shrink basis;

where grow defines the growth of the flex

item, shrink provides its shrink rate, and basis

sets the item’s initial size

◼ The default flex value is:
flex: 0 1 auto;

which automatically sets the size of the flex

item to match its content or the value of its

width and height property

Copyright Dan Brandon, PhD, PMP

165

FlexBox Design (con’t)

◼ The flex property supports the following keywords:

◼ auto – Use to automatically resize the item from

its default size (equivalent to flex: 1 1

auto;)

◼ initial – The default value (equivalent to

flex: 0 1 auto;)

◼ none – Use to create an inflexible item that will

not grow or shrink (equivalent to flex: 0 0

auto;)

◼ inherit – Use to inherit the flex values of its

parent element

Copyright Dan Brandon, PhD, PMP

166

FlexBox Design (con’t)

Copyright Dan Brandon, PhD, PMP

167

FlexBox Design (con’t)

Copyright Dan Brandon, PhD, PMP

168

FlexBox Design (con’t)

◼ The flexbox model allows to place the flex

items in any order using the following order

property:

order: value;

where value is an integer where items with

smaller order values are placed before items

with larger order values

Copyright Dan Brandon, PhD, PMP

169

FlexBox Design (con’t)

Copyright Dan Brandon, PhD, PMP

170

FlexBox Design (con’t)

◼ By default, flex items are laid down at the start of the

main axis

◼ To specify a different placement, apply the following
justify-content property

justify-content: placement;

where placement is one of the following keywords:

flex-start – Items are positioned at the start of the main axis (the

default)

flex-end – Items are positioned at the end of the main axis

center – Items are centered along the main axis

space-between – Items are distributed evenly with the first and last

items aligned with the start and end of the main axis

space-around – Items are distributed evenly along the main axis with

equal space between them and the ends of the flexbox

Copyright Dan Brandon, PhD, PMP

171

FlexBox Design (con’t)

◼ The align-content property is similar to the justify-

content property except that it arranges multiple lines of

content along the flexbox’s cross axis

◼ The syntax of the align-content property is:
align-content: value;

where value is one of the following keywords:
flex-start - Lines are posit

flex-end - Lines are positioned at the end of the cross axis

stretch - Lines are stretched to fill up the cross axis (the default)

center - Lines are centered along the cross axis

space-between - Lines are distributed evenly with the first and last lines

aligned with the start and end of the cross axis

ioned at the start of the cross axis

space-around - Lines are distributed evenly along the cross axis with equal

space between them and the ends of the cross axis

Copyright Dan Brandon, PhD, PMP

172

FlexBox Design (con’t)

◼ The align-items property aligns each flex item

about the cross axis

◼ The syntax is:
align-items: value;

where value is one of the following keywords:

flex-start – Items are positioned at the start of the cross axis

flex-end – Items are positioned at the end of the cross axis

center – Items are centered along the cross axis

stretch – Items are stretched to fill up the cross axis (the

default)

baseline – Items are positioned so that the baselines of their

content align

Copyright Dan Brandon, PhD, PMP

173

FlexBox Design (con’t)

◼ The align-items property is only impactful

when there is a single line of flex items

◼ The align-content property is used to layout

the flexbox content for multiple lines of flex

items

◼ To align a single item out of a line of flex
items, use the following align-self property:

align-self: value;

where value is one of the alignment choices

supported by the align-self property

Copyright Dan Brandon, PhD, PMP

174

FlexBox Design (con’t)

◼ Navicon – It is used to indicate the presence of

hidden navigation menus in mobile websites

◼ The navicon is a symbol represented as three

horizontal lines

◼ When a user hovers or touches the navicon,

the navigation menu is revealed

Copyright Dan Brandon, PhD, PMP

175

PRINTED MEDIA

Appendix

Copyright Dan Brandon, PhD, PMP

176

Printed Media

◼ A print style sheet formats the printed

version of a web document

◼ Browsers support their own internal style

sheet to format the print versions of the

web pages they encounter

◼ Their default styles might not always result in

the best printouts

◼ To apply a print style sheet, the media

attribute is used in the link elements to

target style sheets to either screen devices or

print devices
Copyright Dan Brandon, PhD, PMP

177

Printed Media (con’t)

Copyright Dan Brandon, PhD, PMP

178

Printed Media (con’t)

◼ Every printed page in CSS is defined as a

page box

◼ A page box is composed of two areas:

◼ Page area – contains the content of the

document

◼ Margin area – contains the space between

the printed content and the edges of the page

Copyright Dan Brandon, PhD, PMP

179

Printed Media (con’t)

◼ Styles are applied to the page box using:

@page {

style rules

}

where style rules are the styles applied to

the page

◼ The styles are limited to defining the page

size and the page margin

Copyright Dan Brandon, PhD, PMP

180

Printed Media (con’t)

◼ The following size property allows web authors

to define the dimensions of a printed page:

size: width height;

where width and height are the width and

height of the page

• The keyword auto lets browsers

determine the page dimensions

• The keyword inherit inherits the page

size from the parent element

Copyright Dan Brandon, PhD, PMP

181

Printed Media (con’t)

◼ Different styles can be defined for different

pages by adding the following:

@page:pseudo-class {

style rules

}

where pseudo-class is first for the first page of

the printout, left for the pages that appear on

the left in the double-sided printouts, or right for

pages that appear on the right in double-sided

printouts

Copyright Dan Brandon, PhD, PMP

182

Printed Media (con’t)

◼ To define styles for pages other than the first, left, or

right, create a page name as follows:

@page name {

style rules

}

where name is the label given to the page

• To assign a page name to an element, use
selector {

page: name;

}

where selector identifies the element that will be

displayed on its own page, and name is the name of a

previously defined page style
Copyright Dan Brandon, PhD, PMP

183

Printed Media (con’t)

◼ To append the text of a link’s URL to the linked text,

apply the following style rule:

a::after {

content: “ (“ attr(href) “) “;

}

This style rule uses the after pseudo-element along

with the content property and the attr() function to

retrieve the text of the href attribute and add it to the

contents of the a element

The word-wrap property is used to break long text

strings at arbitrary points if it extends beyond the

boundaries of its container

Copyright Dan Brandon, PhD, PMP

184

Printed Media (con’t)

Copyright Dan Brandon, PhD, PMP

185

Printed Media (con’t)

◼ Page breaks can be inserted either directly before or

after an element, using the following properties:
page-break-before: type;

page-break-after: type;

where type has the following possible values:
– always – Use to always place a page break before or after the

element

– avoid – Use to never place a page break

• left – Use to place a page break where the next page will be a left

page

• right – Use to place a page break where the next page will be a right

page

• auto – Use to allow the printer to determine whether or not to insert a

page break

• inherit – Use to insert the page break style from the parent element
Copyright Dan Brandon, PhD, PMP

186

Printed Media (con’t)

◼ Page breaks can be prevented by using the
keyword avoid in the page-break-after

or page-break-before properties

◼ For example, the following style rule prevents

page breaks from being added after any

heading

h1, h2, h3, h4, h5, h6 {

page-break-after: avoid;

}

Copyright Dan Brandon, PhD, PMP

187

Printed Media (con’t)

◼ Page breaks within block elements, such as paragraphs,

often leave behind widows and orphans

◼ A widow is a fragment of text left dangling at the top of a

page

◼ An orphan is a text fragment left at the bottom of a page

◼ To control the size of widows and orphans, CSS

supports the following properties:
widows: value;

orphans: value;

where value is the number of lines that must appear

within the element before a page break can be inserted

by printer

Copyright Dan Brandon, PhD, PMP

188

MOBILE TABLES

Appendix

Copyright Dan Brandon, PhD, PMP

189

Tables and Mobile Devices

◼ Tables do not scale well to mobile devices

◼ Problems faced by users to view a table in a mobile

device

◼ Table is too small to read

◼ Table does not fit the visual viewport

◼ Table columns are too narrow to read the cell content

190

Tables and Mobile Devices (con’t)

◼ A new layout of table data for mobile screens is required

◼ Several table columns are reduced to two:

◼ One column containing all data labels

◼ Second column containing data associated with each

label

◼ To create a responsive web table, add the text of data
labels as attributes of all td elements in the table body

◼ Store data labels using a data attribute

◼ General format of a data attribute is
data-text=“value”

where text is the name of the data attribute and value

is its value 191

Tables and Mobile Devices (con’t)

◼ Data attributes use names specific to the function it is

used for

◼ For example, the following code uses a data attribute
named data-label to store the text of the labels

associated with the data cell:
<td data-label=“Date”>April 2, 2021</td>

◼ The result is a list of data cells that are aligned as block

elements

◼ Within each block element, the data label is followed

by the data cell content

◼ The goal is to transform table with multiple columns

into two-column layout

Copyright Dan Brandon, PhD, PMP

192

Tables and Mobile Devices (con’t)

193

Tables and Mobile Devices (con’t)

◼ Column layout enables display of content side-by-side in

a page

◼ Layouts that use float elements or flexboxes differ from

column layout

◼ Single element can flow from one column to the next

◼ Flow of content adjusts to match the page width

◼ Size of a column is set using the column-count property

column-count: value;

where value is the number of columns in the layout

◼ Browser extensions are included to ensure cross-

browser compatibility

Copyright Dan Brandon, PhD, PMP

194

Tables and Mobile Devices (con’t)

◼ Columns are laid out evenly across the width of the

parent element by default

◼ To set the column width, use the column-width property

column-width: size;

where size is the minimum width of the column

◼ Column width acts like the basis value for items in a

flexbox

.

195

Tables and Mobile Devices (con’t)

◼ The column-width and column-count

properties are combined to form shorthand

columns property

columns: width count;

◼ The default gap between columns is 1em

◼ To set a different gap size, use the column-

gap property

column-gap: size;

where size is the width of the gap

Copyright Dan Brandon, PhD, PMP

196

Tables and Mobile Devices (con’t)

◼ Another way to separate columns is with a graphic
dividing line created using the column-rule property

column-rule: border;

where border defines the style of dividing line

◼ The column-rule property can be broken into

individual properties like column-rule-width, column-

rule-style, and column-rule-color

197

Tables and Mobile Devices (con’t)

◼The size of column orphans is controlled

using the orphans property
orphans: value;

where value is the minimum number of lines

stranded before a column break

◼The size of column widows is controlled

using the widows property
widows: value;

where value is the minimum number of lines

placed after a column break 198

Tables and Mobile Devices (con’t)

◼ Other properties to define column breaks

break-before: type;

break-after: type;

where type is one of the following:

auto (browser automatically sets column break)

always (to always place a column break)

avoid (to avoid placing a column break)

Copyright Dan Brandon, PhD, PMP

199

Tables and Mobile Devices (con’t)

◼ To control placement of column breaks within an

element, use the property

break-inside: type;

where type is either auto or avoid

200

Tables and Mobile Devices (con’t)

◼ To span cell columns, use the column-span

property

column-span: span;

where span is either none to prevent

spanning or all to enable the content to

span across all the columns

201

Carey, HTML5 and CSS3, 8th Edition. © 2021 Cengage. All Rights Reserved. May not be scanned, copied or

duplicated, or posted to a publicly accessible website, in whole or in part.

Spanning Cell Columns

(continued)

