
Internet Programming

HTML5 Extensions

Dan Brandon, Ph.D., PMP

1Copyright Dan Brandon, PhD, PMP



History

◼ In 1998 the W3C decided not to continue HTML, 

but to follow XML standards

◼ HTML was frozen at version 4.01 and the 

specification for XHTML was born which was 

HTML within the XML syntax

◼ Several flavors of XHTML were created including 

XHTML Transitional which was intended to be a 

migration aid

◼ Next work began on the XHTML 2.0 standard 

which was not to be backward compatible with 

HTML 2



History (con’t)

◼ Some “dissidents” (such as Ian Hickson originally 

at Opera and later Google) did not agree with 

that new direction, and they were “supported” to 

some degree by some industry heavyweights 

including Apple

◼ In 2004 they formed a group called WHATWG

◼ Web Hypertext Application Technology Working 

Group (www.whatwg.org)

◼ And they started an effort called Web 

Applications 1.0 which was backward compatible

with HTML 3

http://www.whatwg.org/


History (con’t)

◼ In 2006 the W3C determined they had perhaps 

marched off in the wrong direction, and the 

world did not want to move to XML/XHTML and 

lose backward compatibility with HTML

◼ In 2007 W3C’s restructured working group then 

voted to use the WHASTWG’s Web Applications 

spec for the next version of HTML → HTML5

◼ www.w3.org/TR/html5

◼ In 2009 the W3C stopped working on XHTML 

2.0 and threw all its support behind HTML5
4



History (con’t)

◼ The specification is an ongoing work, and is 

expected to remain so for many years, 

although parts of HTML5 are implemented in 

browsers before the whole specification 

reaches final Recommendation status
◼ On 14 February 2011, the W3C extended the charter of its HTML 

Working Group with clear milestones for HTML5

◼ In May 2011, the working group advanced HTML5 to "Last Call", 

an invitation to communities inside and outside W3C to confirm 

the technical soundness of the specification

◼ In 2012 work started in earnest and now the W3C has developed 

a comprehensive test suite to achieve broad interoperability for 

the full specification
5



WHATWG

6



W3C HTML5

7



SGML, XML & Compatibility

◼ The HTML5 syntax is no longer based on SGML despite the 

similarity of its markup

◼ It is not an XML language and must be served up as a MIME 

type of text/html

◼ However, it comes with a new introductory line that looks like 

an SGML document type declaration, <!DOCTYPE html>, 

which enables standards-compliant rendering in all browsers 

that use "DOCTYPE sniffing”

◼ HTML5 has been designed to be backward compatible with 

common parsing of older versions of HTML

◼ HTML5 also specs technologies such as AJAX, and 

specifically defines error handling

8



Differences from XHTML

◼Forgiving syntax:

◼Upper/lowercase

◼Quoting

◼Omitting implied elements (head, body, 

etc.)

◼Omitting implied declarations (type = …)

9



Differences from HTML 4+

◼ Don’t use “center” (use CSS)

◼ No more frames (use CSS)  - [iframe still OK]

◼ Don’t use tables for page layout (use CSS) –

no more align, bgcolor, cellpadding, 

cellspacing, height, width, nowrap, rules, 

valign

◼ Deprecated elements will be dropped altogether 

(eventually): acronym, applet, basefont, big, 

center, dir, font, frame, frameset, isindex, 

noframes, s, strike, tt, u
10



Differences from HTML 4+

◼ New parsing rules: oriented towards flexible parsing and 

compatibility -- not based on SGML 

◼ Ability to use inline SVG (Scalable Vector Graphics) and 

MathML in text/html 

◼ New types of form controls: dates and times, email, url, 

search, color

◼ New attributes and global attributes (that can be applied 

for every element): id, tabindex, hidden, data-* (custom 

data attributes)

◼ Some deprecated elements from HTML 4.01 have been 

dropped, including purely presentational elements such as 

<font> and <center>, whose effects are achieved using 

CSS (Cascading Style Sheets)
11



New Elements and Attributes

◼ HTML5 introduces a number of new elements and 

attributes that reflect typical usage on modern 

websites
◼ New elements: article, aside, audio, canvas, command, datalist, 

details, embed, figcaption, figure, footer, header, hgroup, keygen, 

mark, meter, nav, output, progress, rp, rt, ruby, section, source, 

summary, time, video, wbr 

◼ Some of them are semantic replacements for common uses of 

generic block (<div>) and inline (<span>) elements, for example 

<nav> (website navigation block) and <footer> (usually referring 

to bottom of web page)

◼ Other elements provide new functionality through a 

standardized interface, such as the multimedia elements 

<audio> and <video>

12



API’s

◼ In addition to specifying markup, HTML5 specifies scripting 

application programming interfaces (APIs)

◼ There is also a renewed emphasis on the importance of DOM 

scripting (e.g., JavaScript) in Web behavior; existing document 

object model (DOM) interfaces are extended and de facto 

features documented

◼ There are also new APIs, such as:

◼ The canvas element for immediate mode 2D drawing

◼ Timed media playback 

◼ Offline storage database (offline web applications). See Web Storage 

◼ Document editing 

◼ Drag-and-drop 

◼ Cross-document messaging

◼ Browser history management 

◼ MIME type and protocol handler registration. 

◼ Microdata 13



Related Technologies

◼ Not all of the previous technologies are included in 

the W3C HTML5 specification, though they are in the 

WHATWG HTML specification

◼ Some related technologies, which are not part of 

either the W3C HTML5 or the WHATWG HTML 

specification, are

◼ Geolocation 

◼ Web SQL Database, a local SQL Database

◼ The Indexed Database API, a indexed hierarchical 

key-value store (formerly WebSimpleDB)

◼ The W3C publishes specifications for these 

separately
14



When Can I Use
[http://caniuse.com/]

15

http://caniuse.com/


When Can I Use – Specific Features

16



When Can I Use – Feature by Browser

17



Layout Control – Structural Elements

◼ HTML5 defines new structural elements that facilitate 

page layout that traditionally was accomplished with 

CSS classes and DIV’s, and provides more semantics

◼ Header

◼ Nav

◼ Article & Section

◼ Footer

18



Structural Elements (con’t)

◼However (without custom css files) the 

current browsers still do not understand 

these new structural tags

◼One can simulate the behavior of these 

new tags by defining them in CSS

◼The next slide shows an example of this 

new navigation using the HML5 tags 

with an external CSS file to simulate the 

effect
19



Example HTML5 File

◼ <html lang="en">

◼ <head>

◼ <meta http-equiv="Content-Type" content="text/html; charset=us-ascii">

◼ <link rel="stylesheet" type="text/css" href="html5_css.css">

◼ </head>

◼ <body>

◼ <header>

◼ <h1 align="center">PAGE HEADER</h1>

◼ </header>

◼ <nav>

◼ <ul>

◼ <li>Link 1 </li>

◼ <li>Link 2 </li>

◼ <li>Link 3 </li>

◼ <li>Link 4 </li>

◼ <li>Link 5 </li>

◼ <li>Link 6 </li>

◼ </ul>

◼ </nav>

◼ <article>

◼ <h2 align="center">MAIN CONTENT</h2>

◼ </article>

◼ <footer>

◼ <h3 align="center">Page Footer</h3>

◼ </footer>

◼ </body>

◼ </html>

20



Example HTML5 File Rendered

21



CSS Simulation File

◼The CSS file to simulate HTML5 styling 

is:

◼ header, nav, footer, article {display:block}

◼ nav {float:left; width:20%}

◼ article {float:right; width:79%}

◼ footer {clear:both}

22



IE and CSS Elements

◼ The previous CSS file to simulate new 

HTML5 styling will work in all browsers except 

earlier IE

◼ For IE before version 9, the following 

JavaScript will also need to be added:

◼ document.createElement('header');

◼ document.createElement('nav');

◼ document.createElement('article');

◼ document.createElement('footer');

◼ And JavaScript will need to enabled
23



Other Structural Elements

◼Ol

◼Dl

◼Cite

◼Address

◼Em, i

◼Strong, b

◼Hr

◼hgroup

◼aside

◼details

◼figure

◼mark

24



HTML 5 Extensions for Forms

◼ HTML 5 provides new types of form controls which may 

provide both error checking and/or entry aids such as 

“pickers”:
◼ range (exact number not important)

◼ number

◼ telephone number

◼ color

◼ date, time, datetime (UTC), datetime-local, month, week

◼ email

◼ image

◼ search

◼ url

◼ Password

◼ New attributes and functions are also available



Example Form



Example HTML 5 Form Code
◼ <!DOCTYPE html>

◼ <html>

◼ <head>

◼ <meta charset="utf-8">

◼ <title>Example HTML5 Form</title>

◼ </head>

◼ <body>

◼ <h1 style="text-align:center">Example HTML5 Form</h1>

◼ <form method="post" action="echo.php">

◼ <table align="left">

◼ <tr>

◼ <td>Last Name:</td><td><input name="lname' placeholder="Enter your last name" autofocus></td>

◼ </tr>

◼ <tr>

◼ <td>First Name:</td><td><input name="fname' placeholder="Enter your first name"></td>

◼ </tr>

◼ <tr>

◼ <td>Email:</td><td><input type="email" name="email' placeholder="Enter your email address"></td>

◼ </tr>

◼ <tr>

◼ <td>Tele:</td><td><input type="tel" name="tele' placeholder="Enter your telephone number"></td>

◼ </tr>

◼ <tr>

◼ <td>Weight:</td><td><input type="range" min="50" max="1000" step="10" value="170" name="weight" placeholder="Enter your weight in 

pounds"></td>

◼ </tr>

◼ <tr>

◼ <td>Height:</td><td><input type="number" min="36" max="96" step="2" value="72" name="height" placeholder="Enter your weight in 

pounds"></td>

◼ </tr>

◼ <tr>

◼ <td>Birthdate:</td><td><input type="date" name="bdate' placeholder="Enter your birthdate"></td>

◼ </tr>

◼ <tr>

◼ <td>Birthtime:</td><td><input type="time" name="btime' placeholder="Enter your birth time (24 hour)"></td>

◼ </tr>

◼ <tr>

◼ <td>Website:</td><td><input type="url" name="web' placeholder="Enter your web site"></td>

◼ </tr>

◼ <tr>

◼ <td>Eye Color:</td><td><input type="color" name="ecolor' placeholder="Enter your eye color"></td>

◼ </tr>

◼ </table>

◼ <br clear="all">

◼ <input type="submit" value="SUBMIT">

◼ <input type="reset" value ="RESET">

◼ </form>

◼ </body>

◼ </html>



Example Form (con’t) 



Example Form (con’t)



Fieldset & Legend

30



Fieldset & Legend (adding style)

31



Browser Awarness

◼Browsers will now know what type of 

data is to be entered in each type of 

form field, and can provide 

“accommodations”

◼For example, the IPhone pop up 

keyboard is customized for each form 

element type

◼ The keyboard for an email field would have 

big buttons for the “.” and “@” symbols
32



Pattern Attribute

◼ If none of these new input types suits your 

needs, HTML 5 provides the pattern attribute for 

input elements with type="text“

◼ The value of the pattern attribute is a regular 

expression, as defined in ECMAScript and used 

in JavaScript

◼ For example, if one wanted to match a five-digit 

or nine-digit US ZIP code or a six-character 

Canadian postal code, one could use this 

pattern:

◼ ([0-9]{5}(-[0-9]{4})?)|([A-Z][0-9][A-Z]\s+[0-9][A-Z][0-9])

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf


Pattern Attribute (con’t)

◼<input type=“text” name=“postCode” 

required=“required”

◼ pattern=“([0-9]{5}(-[0-9]{4})?)|([0-9][A-

Z][0-9]\s+[A-Z][0-9][A-Z])”

◼ title=“US: 99999-1234; Canadian: 

0A1&#160;B2C” /> 



Drag & Drop (DnD)

◼ The HTML5 spec defines an event-based 

mechanism, JavaScript API, and additional 

markup for declaring that just about any type of 

element be “draggable” on a page

◼ Many apps that utilize DnD would have a poor 

experience without it, for example, imagine a 

chess game pieces that don't move

◼ Currently supported in latest versions of mose

browsers

◼ Determining if a browser implements DnD is important for 

providing a solution that degrades nicely → 35



Drag & Drop (con’t)

◼ Via Modernizr (which sets 

a boolean property for 

each feature it tests), 

checking for DnD is a one-

liner:

◼ if 

(Modernizr.draganddrop) 

{ // Browser supports 

HTML5 DnD}

◼ else { // Fallback to a 

another solution}
36

http://www.modernizr.com/

http://www.modernizr.com/


Draggable Property

◼ Making an object draggable is simple - set the 

draggable=true attribute on the element you want to 

make moveable

◼ Just about anything can be drag-enabled, including 

images, links, files, or other DOM nodes:

◼ <div id=“dragobject1” draggable=“true”>…</div>

◼ In most browsers, text selections, img elements, and 

anchor elements with an href attribute are draggable by 

default

◼ Most browsers support dragging an image which can be 

dropped in the address bar, a <input type="file" /> element, or 

even the desktop; if you want to enable other types of content to 

be draggable, you'll need to use HTML5 DnD methods 37



Dragging Events

◼ ondragstart, ondrop, ondragend are used to 

signal the start end and end of the drag process 

and the actual drop (release)

◼ ondragenter, ondragover, and ondragleave 

event handlers are used to provide additional 

visual cues during the drag process 

◼ Example:

◼ <div id=“target1” ondragenter=“return enter(event)”> 

… </div>

38



dataTransfer Object

◼ The dataTransfer object is a part of the event object

◼ It has a property named effectAllowed that allows one to 

specify what DnD operation is allowed

◼ It also has functions named setData() and getData() that 

allows one to specify what data is to be dragged with 

the object, and also a function named setDragImage() 

that allows one to specify the image of the item being 

dragged

◼ For example:
◼ e.dragTransfer.effectAllowed=‘move’;

◼ e.dragTransfer.setData(“Text”, e.target.getAttribute(‘id’));

◼ e.dragTransfer.setDragImage(e.target, 0, 0);

39



Drag & Drop (con’t)

Copyright Dan Brandon, PhD, PMP

40



DnD Example - Before

41



DnD Example - Code

◼ <!DOCTYPE html>

◼ <html>

◼ <head>

◼ <meta charset="utf-8">

◼ <title>HTML5 DnD Example</title>

◼ <script type="text/javascript">

◼ function start(e) {

◼ e.dataTransfer.effectAllowed='move';

◼ var idz = e.target.getAttribute("id");

◼ e.dataTransfer.setData("Text",idz);

◼ e.dataTransfer.setDragImage(e.target, 0, 0); /* offset of 0,0 */

◼ return true;

◼ }

◼ function enter(e) {return true;}

◼ function over(e) {

◼ /* if a value of true is returned, the dragged object may not be dropped; if false, it can be dropped */

◼ var id = e.target.getAttribute('id');

◼ if (id == 'target1') return false; /* any item may be dropped on target1 */

◼ var idx = e.dataTransfer.getData("Text");

◼ /* draggable object 3 may only be dropped on target 3 */

◼ if (id == 'target3' && idx == 'dragobject3') return false;

◼ if (id == 'target2' && (idx == 'dragobject1' || idx == 'dragobject2')) return false;

◼ return true;

◼ }

◼ function drop(e) {

◼ var idx = e.dataTransfer.getData("Text");

◼ e.target.appendChild (document.getElementById(idx)); /* append draggable <div> to target <div> */

◼ e.stopPropagation(); /* stop bubble up of event */

◼ return false; 

◼ }

◼ function end(e) {

◼ e.dataTransfer.clearData("Text"); /* clear data in dataTransfer object */

◼ return true;

◼ }

◼ </script>

◼ <style type="text/css">

◼ /* set visual properties of target areas */

◼ #target1, #target2, #target3 {background-color:red; float:left; width:200px; height:200px; padding:10px; margin:10px;}

◼ /* set visual properties of draggable objects */

◼ #dragobject1, #dragobject2, #dragobject3 {text-align:center; margin-left:auto; margin-right:auto; background-color:blue; width:50px; height:50px; padding:5px; margin-

top:5px;}

◼ </style>

◼ </head>

◼ <body>

◼ <h1>HTML5 DnD Example</h1>

◼ <div id="target1" ondragenter="return enter(event)" ondragover="return over(event)" ondrop="return drop(event)">

◼ <div id="dragobject1" draggable="true" ondragstart="return start(event)" ondragend="return end(event)">Object 1</div>

◼ <div id="dragobject2" draggable="true" ondragstart="return start(event)" ondragend="return end(event)">Object 2</div>

◼ <div id="dragobject3" draggable="true" ondragstart="return start(event)" ondragend="return end(event)">Object 3</div>

◼ </div>

◼ <div id="target2" ondragenter="return enter(event)" ondragover="return over(event)" ondrop="return drop(event)"></div>

◼ <div id="target3" ondragenter="return enter(event)" ondragover="return over(event)" ondrop="return drop(event)"></div>

◼ </body>

◼ </html>

42



After DnD

43



HTML5 Inline Editing

◼ Make elements editable

◼ Make an entire document editable

◼ Formatting and spell check (currently Firefox 

only)

◼ Currently supported in: Chrome, Firefox, IE 

9+, Safari, Opera

◼ Enables web developers to build rich text 

editors



Editing Attributes

◼ contenteditable
◼ true

◼ <div id="editME“  contenteditable="true“ 
>…</div>

◼ false

◼ inherit

◼ designmode
◼ on

◼ off

◼ spellcheck
◼ true

◼ false



Document Interaction API

◼ The API for interacting with the document is:
◼ document.execCommand - executes the given 

command

◼ document.queryCommandEnabled - determines 
whether the given command can be executed on the 
document in its current state

◼ document.queryCommandIndeterm - determines 
whether the current selection is in an undetermined 
state

◼ document.queryCommandState - determines whether 
the given command has been executed on the current 
selection

◼ document.queryCommandValue - determines the 
current value of the document, range, or current 
selection for the given command



Formatting

◼ To change the format of selected text:

◼ Object.execCommand(CMD, INTF, VALUE)
◼ CMD – command to execute

◼ INTF – show user interface (true or false) [default false]

◼ VALUE – value to assign [optional]

◼ onclick="document.execCommand('bold', false, null);”

◼ Only basic stuff like bold, italic, creating links, 
and changing colors is well-supported across 
browsers; after that, there are  compatibility 
issues



Test Page of Commands
[http://www.quirksmode.org/dom/execCommand/]

http://www.quirksmode.org/dom/execCommand/


Inline Editing Example 



Hitting “Show HTML” Button



Inline Editing Example (con’t)
◼ <!DOCTYPE html>

◼ <html>

◼ <head>

◼ <meta charset="utf-8">

◼ <title>In Line Editing</title>

◼ <script type="text/javascript">

◼ function createLink() {

◼ var u = prompt("Enter URL:", "http://");

◼ if (u) document.execCommand ("createlink", false, u);

◼ }

◼ function showHTML() {

◼ var x = document.getElementById("editME").innerHTML;

◼ alert(x);

◼ }

◼ </script>

◼ <style type="text/css">

◼ #editME {border:solid black; background-color:pink; height:500px; width:500px}

◼ </style>

◼ </head>

◼ <body>

◼ <h1>In Line Editing</h1>

◼ <div>

◼ <input type="button" value="Bold" onclick="document.execCommand('bold', false, null);">

◼ <input type="button" value="Italic" onclick="document.execCommand('italic', false, null);">

◼ <input type="button" value="Underline" onclick="document.execCommand('underline', false, null);">

◼ <input type="button" value="Add Link" onclick="createLink();">

◼ <input type="button" value="Show HTML" onclick="showHTML();">

◼ </div>

◼ <br>

◼ <div id="editME" contenteditable="true"></div>

◼ </body>

◼ </html>



SpellCheck

◼On by default in Firefox

◼Suspected spelling errors are 

underlined – right click to see list of 

possible corrections
◼ <div id="editME“  contenteditable="true“  

spellcheck=“true” ></div>



SpellCheck (con’t)



Design Mode

◼ The designMode attribute governs the entire 
document (i.e. it makes the entire document 
editable, like a dedicated HTML editor)

◼ The contentEditable attribute governs just the 
element on which it appears, and that element's 
children

◼ Enabling designMode causes scripts in general 
to be disabled and the document to become 
editable 

◼ When the Document has designMode enabled, 
event listeners registered on the document or 
any elements owned by the document must do 
nothing 



HTML5 Messaging

◼ Cross window or cross domain

◼ One window (or iframe) can send messages 
to another

◼ Current browser support: Opera, Safari

◼ Messaging API:

◼ postMessage() function:

◼ window.postMessage(message, target)

◼ onMessage event

◼ Event attributes:

◼ event.data, event.origin, event.source



Messaging Example
◼ <!DOCTYPE html>

◼ <html>

◼ <head>

◼ <meta charset="utf-8">

◼ <title>Messaging</title>

◼ <script type="text/javascript">

◼ function send() {

◼ var m = document.getElementById("msgText").value;   // message

◼ var l = window.location;

◼ var p = l.protocol;

◼ var h = l.host;

◼ var t = p + "//" + h; // target

◼ document.getElementById("frame1").contentWindow.postMessage(m,t)

◼ }

◼

◼ </script>

◼ <style type="text/css">

◼ #frame1 {border:solid black; background-color:pink; height:500px; width:500px}

◼ </style>

◼ </head>

◼ <body>

◼ <h1>Messaging</h1>

◼ <iframe id="frame1" src="frameContent.html"></iframe>

◼ <br><br>

◼ <form>

◼ Message: <input id="msgText" type="text">

◼ <input type="button" value = "Send Message" onclick="send();">

◼ </form>

◼ </body>

◼ </html>



Frame Content (HTML)

◼ <!DOCTYPE html>

◼ <html>

◼ <head>

◼ <meta charset="utf-8">

◼ <title>Frame Content</title>

◼ <script type="text/javascript">

◼ window.addEventListener("message", loadMsg, false)

◼ function loadMsg(e) {

◼ document.getElementById("msgTarget").innerHTML = e.data;

◼ }

◼ </script>

◼ <style type="text/css">

◼ #msgTarget {border:solid black; background-color:yellow; height:200px; 
width:200px}

◼ </style>

◼ </head>

◼ <body>

◼ <h1>Frame Content</h1>

◼ <div id="msgTarget"></div>

◼ </body>

◼ </html>



Before Sending Message



After entering message, and hitting 

send button…



Offline Storage

◼ Web Storage (key/value pairs, currently 

values must be strings [can serialize via 

JSON API])

◼ Session Storage

◼ Local Storage

◼ File API

◼ Web SQL Database (based on SQLite with 

transaction support)

◼ IndexedDB (with transactions)

60



JSON API for Javascript

61



Session Storage

◼ When a browser connects to a server, a new “session” 

is started

◼ In earlier versions of HTML, when the user closed the 

browser window or set focus to another window, the 

session was closed

◼ In order to save data from a session, that data needed 

to be stored locally in cookies or up on the server (in 

the server’s session memory or on server files) via 

server programming

◼ With HTML5 and JavaScript, the browser can store 

data in a server session as long as there is not 15 

minutes of inactivity (since window closed)
62



sessionStorage Object

◼ Attribute:

◼ length – number of key/value pairs

◼ Methods:

◼ key(n) – return the name of the n’th key

◼ getItem(key) – return value for key

◼ setItem(key, value) – set value for key

◼ removeItem(key) – remove a key/value

◼ clear() – clear all session data

◼ Currently supported in: Firefox, Safari

63



Example Session Storage

◼ <!DOCTYPE html>

◼ <html>

◼ <head>

◼ <meta charset="utf-8">

◼ <title>Session Storage</title>

◼ <script type="text/javascript">

◼ function sStore() {

◼ var x = document.getElementById("data").value;

◼ sessionStorage.setItem("Data", x);

◼

◼ }

◼ function sGet() {

◼ var x = sessionStorage.getItem("Data");

◼ document.getElementById ("data").value = x;

◼ }

◼ function sClear() {

◼ sessionStorage.removeItem("Data");

◼ document.getElementById("data").value = "";

◼ }

◼ </script>

◼ </head>

◼ <body>

◼ <h1>Session Storage</h1>

◼ <form>

◼ Data: <input id="data" type="text">

◼ <input type="button" Value="Store" onclick="sStore();">

◼ <input type="button" Value="Get" onclick="sGet();">

◼ <input type="button" Value="Clear" onclick="sClear();">

◼ </form>

◼ </body>

◼ </html>

64



Example Session Storage (con’t)
[to create a true session, one needs to load this from a server]

65

Type in test info, hit “Store”, erase data, hit “Get”, hit “Clear”



Local Storage

◼ With HTML5, the browser can also store data 

locally until the user closes the browser (the 

user can navigate away from the browser 

window, and return later to get the data)

◼ HTML5 provides a mechanism to detect if 

your’re online:

◼ Navigator.onLine()

◼ You can also “catch events”
◼ document.body.addEventListner(“online”, function() {…})

◼ document.body.addEventListner(“offline”, function() {…})

66



localStorage Object

◼ Attribute:

◼ length – number of key/value pairs

◼ Methods:

◼ key(n) – return the name of the n’th key

◼ getItem(key) – return value for key

◼ setItem(key, value) – set value for key

◼ removeItem(key) – remove a key/value

◼ clear() – clear all local data

◼ Currently supported in: Firefox, Safari, 

Chrome
67



Local Storage Example

◼ <!DOCTYPE html>

◼ <html>

◼ <head>

◼ <meta charset="utf-8">

◼ <title>Local Storage</title>

◼ <script type="text/javascript">

◼ function lStore() {

◼ var x = document.getElementById("data").value;

◼ localStorage.setItem("Data", x);

◼

◼ }

◼ function lGet() {

◼ var x = localStorage.getItem("Data");

◼ document.getElementById ("data").value = x;

◼ }

◼ function lClear() {

◼ localStorage.removeItem("Data");

◼ document.getElementById("data").value = "";

◼ }

◼ </script>

◼ </head>

◼ <body>

◼ <h1>Local Storage</h1>

◼ <form>

◼ Data: <input id="data" type="text">

◼ <input type="button" Value="Store" onclick="lStore();">

◼ <input type="button" Value="Get" onclick="lGet();">

◼ <input type="button" Value="Clear" onclick="lClear();">

◼ </form>

◼ </body>

◼ </html>

68



Local Storage Example (con’t)

69
Type in test info, hit “Store”, erase data, hit “Get”, hit “Clear”



FileSystem API

◼ With HTML5 browsers can read and write files 

and directories

◼ With the FileSystem API, a web app can create, 

read, navigate, and write to a sandboxed 

section of the user's local file system

◼ The API is broken up into various themes:
◼ Reading and manipulating files: File/Blob, FileList, FileReader

◼ Creating and writing: BlobBuilder, FileWriter

◼ Directories and file system access: DirectoryReader, 

FileEntry/DirectoryEntry, LocalFileSystem 

70



Browser Support

◼ Currently Google Chrome 9+ has the only working 

implementation of the FileSystem API

◼ Since a dedicated browser UI does not yet exist for 

file/quota management, the API cannot be used without 

running Chrome with the --unlimited-quota-for-files flag

◼ This means there is currently no storage cap in place for 

apps, but that will change, and users will eventually 

receive a permission dialog to grant, deny, or increase 

storage for an app 

◼ You may need the --allow-file-access-from-files flag if 

you're debugging your app from file://

◼ Not using these flags will result in a SECURITY_ERR or 

QUOTA_EXCEEDED_ERR FileError 71



HTML5 Offline Applications

◼ An offline web application uses a list of resources for 

which it keeps a local copy

◼ When connection is established, the resources are 

updated; and when disconnected the local (last 

downloaded) version is used

◼ The resource list is kept in a “manifest” file for each 

web page, which is a text file starting with “CACHE 

MANIFEST”; for example:

◼ CACHE MANIFEST

◼ abc.css

◼ def.js

◼ xyz.jpg
72



HTML5 Offline Applications (con’t)

◼ The offline capable web page has a declaration of its 

manifest in the HTML tag:

◼ <!DOCTYPE HTML>

◼ <html manifest=“/abc.manifest”>

◼ Manifest files must be served as content type 

text/cache-manifest; in Apache, place this directive in 

the .htaccess file at the root of the web directory:

◼ Addtype text/cache-manifest .manifest

◼ The manifest file can also have sections for “fallback” 

files (alternatives) and “network” files (never cached) 

as well as “cache”

73



Google Docs & Offline/Local 

Storage
◼ What if you lose your data or WiFi connection?

◼ Do you lose all of your precious work?

◼ Nope. Thankfully, the Google Docs mobile Web app 

makes smart use of HTML5's offline storage feature

◼ If you're without a signal, the application still works; it 

just can't save your work

◼ Thus you can continue to type away and make 

changes, and the app will sync and save your 

document the next time the device is online

◼ Just be careful about trying to load any other new pages 

or data in the meantime, as there's a chance doing so 

could cause you to lose your changes
74



Geolocation

◼ Determining where you are, and possibly 

sharing that info

◼ Where you are ?

◼ GPS latitude and longitude

◼ IP address

◼ Wireless connection network

◼ Which cell tower you are using

◼ Use your location to find other users, 

business, or things that may be near to you

◼ Browser support: Firefox, Safari, Chrome
75



Position Object

◼ navigator.geolocation.getCurrentPosition 

(callBack, handleError), such as:

◼ function get_loc () {

◼ if (modernizr.geolocation) 

{navigator.geolocation.getCurrentPosition 

(callBack);} else {

▪ // no native support, use another API }

◼ }

◼ For security purposes, must be approved by 

the browser user in some way such as with 

pop-ups
76



Call Back Functions

◼ function callBack (pos) {

◼ var tsp = pos.timestamp;

◼ var lat = pos.coords.latitude;

◼ var lon = pos.coords.longitude;

◼ var alt = pos.coords.altitude;

◼ // do something with these variables

◼ }

◼ function handleError (err) {

◼ If (err == 1) {// user denied}

◼ else {// position not available}

◼ }
77



Methods for Location Determination

◼ Smart phones (such as iPhone and Androids) have 

two methods to determine position:

◼ GPS

◼ Needs GPS hardware in the device

◼ Needs initialization time

◼ Uses more power

◼ Cell tower triangularization

◼ Fast

◼ Position is approximated

◼ The getCurrentPosition function has an optional third 

argument that can specify which options to use and 

timeouts
78



Geolocation Example

◼ <HTML><HEAD><TITLE>Geolocation</TITLE></HEAD>

◼ <BODY>

◼ <p id="geography">What's Your Latitude and Longitude 

Location??</p>

◼ <button onclick="getLocation()">Find Out</button>

◼ <script>

◼ var x=document.getElementById("geography");

◼ function getLocation() {

◼ if (navigator.geolocation) { 

navigator.geolocation.getCurrentPosition(showPosition); } 

else{x.innerHTML="Geolocation is not supported by this browser.";} }

◼ function showPosition(position) { x.innerHTML="Latitude: " + 

position.coords.latitude + "<br />Longitude: " + position.coords.longitude; }

◼ </script>

◼ <BODY></BODY></HTML>

79



Geolocation Example (con’t)

◼ This code works locally, but geolocation is no longer 

working from the server unless you're on an HTTPS 

secured domain (not working From CBUstudent server)

80



Geolocation Example (con’t)

81



Other Geolocation API’s

◼ Google Gears – works for IE also

◼ Device specific API’s

◼ Blackberry

◼ Nokia

◼ Palm

◼ Etc.

◼ geo.js is open source and available to resolve 

differences between W3C geolocation, 

Gears, and other device API’s

82



geo.js

83



HTML5 Demos/Examples
[http://html5demos.com/]

84

http://html5demos.com/


HTML5 Tag Reference
[http://www.w3schools.com/html5/html5_reference.asp]

85

http://www.w3schools.com/html5/html5_reference.asp


References

◼ Pilgrim, M. HTML5 Up and Running, O’Reilly/Google Press, 

Sebastopol, CA

◼ Lawson, L. & Sharp, R. Introducing HTML5. Berkley, CA, New Riders

◼ Celik, T.  HTML5 Now, Berkely, CA, New Riders

◼ Holzner, S.  SAMS Teach Yourself HTML5, Pearson

◼ Html5-Doctor – Helping You Implement HTML5 Today (n.d.) Retrieved 

from http://html5doctor.com/ 

◼ W3C HTML5 – A Vocabulary and Associated API for HTML and 

XHTML (n.d.). Retrieved from 

httpd://dev.w3.org/html5/spec/Overview.html

◼ W3C HTML 5 Differences from HTML 4 (n.d.). Retrieved from 

httpd://dev.w3.org/TR/2008/WD-html5-diff020080122

◼ W3C HTML 5 Reference – A Web Developers Guide to HTML 5 (n.d.). 

Retrieved from httpd://dev.w3.org/html5/html-author

◼ Web Hypertext Application Technology Working Group (n.d.). Retrieved 

from http://www.whatwg.org/specs/ 86



Homework

◼Optional (extra credit): Use one of the 

new HTML5 capabilities in a web page

◼Drop and Drag

◼ Inline Editing

◼Messaging

◼Offline Storage

◼Geolocation

◼See appendices →
87



New HTML5 Elements

◼ Article - The article element is a new sectional element and is used to represent a self-contained entry in a document, page, application or site.

◼ Aside - The aside element is used to represent content which is tangentially related to the content which is around aside element, sometimes, represented as sidebars.

◼ audio - The audio element is a type of media element used to represent an audio stream.

◼ canvas - The canvas element is used for rendering graphs, game graphics, art images or other visual images using a resolution dependent bitmap canvas.

◼ command - The command element represents a command which can be invoked by a user. It can be part of a menu element (explicitly part of a context menu or 

toolbar); alternately it can be placed anywhere else on the page to define a keyboard shortcut or to define other commands.

◼ datalist - The datalist element is used to represent a set of option elements which can act as options of other controls. datalist elements are wired to input elements 

using the list attribute on the input element.

◼ details - The details element is used to represent an area where users can go to obtain additional information. The details element in an interactive element 

represented as a widget.

◼ embed - The embed element is used to represent an integration point for a non-HTML application or interactive content.

◼ summary - The summary element is an interactive element used to represent a summary or legend for the rest of the content.

◼ Figure - The figure element is a grouping element is used to group content that is self-contained and is typically referenced as a single unit from the main flow of the 

document.

◼ Figcaption - The figcaption element represents the caption for a figure element.

◼ Footer - The footer element is used to represent a footer of the preceding sectional content.

◼ Header - The header element is used to represent a header for the succeeding sectional content.

◼ keygen - The keygen element is used to represent a key pair generator control which is used to store the private key in the local keystore and send the public key to 

the server when the form is submitted. The keygen element is a form element.

◼ mark - The mark element is used to highlight a range of text in a document for reference purpose. It is equivalent of using a highlighter to highlight a bunch of text.

◼ meter - The meter element is used to represent a scalar measurement within a known range, for example, how many respondents were male with kids. It should not be 

used to indicate progress.

◼ nav - The nav element is a section with navigation links and represents a section of page that links to other pages.

◼ output - The output element is used to represent the result of a calculation or user action. It supports representation of explicit relationship between itself and the 

elements that represent the values that went into the calculation of the output value.

◼ progress - The progress element is used to represent the progress of a task. It supports both indeterminate situations as well as determinate situations.

◼ Ruby - The ruby element is used to support one or more spans of content to be marked with ruby annotations.

◼ rt - The rt element is used to mark the ruby text component for a ruby annotation.

◼ rp - The rp element is used to provide parenthesis around a ruby text component of a ruby annotation.

◼ Section - The section element is used to represent a generic section of a document or application, usually containing a heading. E.g. chapters in a book.

◼ Source - The source element is used to specify to alternate media resources for media elements. It is not supposed to be dynamically modified, as that will have no 

effect.

◼ Summary- The summary element is an interactive element which is used to represent a summary, or caption for a details element.

◼ Time - The time element represents datetime attribute contents in a machine readable form (limited to various kinds of dates, times, time-zone offsets, and durations).

◼ Video - The video element is a type of media element used to represent a video stream.

◼ wbr - The wbr element is used to represent a line break in a web page.

88



HTML5 New JavaScript API’s

◼ Contacts - The HTML5 specification mentions that the Contacts API allows to have a common contacts repository in the browser 

which can be access by any web application.

◼ Selection - The selection API supports selecting items in DOM (supports CSS3 type of selectors), to be used along with 

JQUERY.

◼ Offline apps - This API allows marking pages to be available in Offline mode. This is useful if a resource requires dynamic 

processing.

◼ Indexed database - This API is meant for a database of records holding simple values (including hierarchical objects). Every 

record has a key and a value. An indexed database is supposed to be implemented using b-trees. Web SQL DB is no longer 

being pursued as part of HTML5 specification.

◼ Web workers - This API is meant to be invoked by web application to spawn background workers to execute scripts which run in 

parallel to UI page. The concept of web works is similar to worker threads which get spawned for tasks which need to invoked 

separate from the UI thread.

◼ Web storage - This specification defines an API for persistent data storage of key-value pair data in Web clients.

◼ Web sockets - This API used for persisting data storage of data in a key-value pair format for Web clients.

◼ Server-Sent Events - This API is used for opening an HTTP connection to receive push notifications from a server. These events 

are received as DOM events. This API is supposed to be used with Push SMS.

◼ XMLHttpRequest2 - This API is used to provide scripted client functionality to transfer data between a server and a client.

◼ Geolocation - This API is used to provide web applications with scripted access to geographical location information of the 

hosting device.

◼ Canvas 2D Context - This API provides objects, methods and properties to draw and manipulate graphics on a canvas drawing 

surface.

◼ HTML Microdata - This API is used to annotate content with specific machine-readable labels, e.g. to allow generic scripts to 

provide services that are customized to a page. Microdata allows nested groups of name-value pairs to be added to documents.

◼ Media Capture - This API is used to facilitate user access to a device's media capture mechanism (camera, microphone, file 

upload control, etc.). This only coves a subset of media capture functionality of the web platform.

◼ Web Messaging - This API is used for communications between browsing contexts in HTML documents.

◼ Forms - The Forms API can be used with the new data types supported with HTML5.

◼ File API - The File APIs are used by the browser to provide secure access to the file system.
89


