
Internet Programming

XML, JSON, SOAP & Web Services

Dan Brandon, Ph.D., PMP

1Copyright Dan Brandon, PhD, PMP

Extensible Markup Language

◼ The beginning of XML goes back to 1997

where a group of developers at SUN (Jon

Bosak, et al) recognized that the Internet

needed more “structure” than was available

with just HTML

◼ A problem with HTML is that it mixes together

both the content and presentation of data

◼ Even with HTML 5 and CSS there is still a

mixture of content and presentation even

though the “style” of the presentation can be

separated

Separation of Content

◼ XML separates data content from data
presentation (use of the data)

◼ XML is a subset of SGML (Standard
Generalized Markup Language – ISO 8879)
which dates back to 1986

◼ HTML is an application of SGML (predefined
tag sets) – 1992

◼ However, XML can be extended and
customized for new and special element
types, since the tags are not predefined

XML Usages

◼Describing “metacontent” (information
about a document’s contents) for
document management, searching, etc.

◼Publishing documents

◼Exchange of data and documents,
including contents of database systems

◼As a “messaging” format between
applications and systems (“SOAP”)

E-Commerce & EAI

◼ About the same time as XML was being
developed and the Internet was exploding, two
other industries were forming:
◼ EAI (Enterprise Application Integration) or “ERP” which had

developed to help corporations link together all their data from
different applications and departments

◼ E-Commerce which had developed to help corporations use the
Internet for commerce with their customers and suppliers

◼ Both of these two new industries needed a way to
transfer data without having to develop “point-to-point”
systems, but with a common format that was web suited
and also vendor and platform independent; XML filled
that need

Point to Point
[Two companies agree on a program to transform data

semantics and format from one system to another]

◼ Seller’s System

◼ Address 50 a/n

◼ City 20 a/n

◼ State – 2 a/n

◼ Zip - 5 n, 4 a/n

◼ Product Code – 3 a,

4 n

◼ Price – 9n

◼ Buyer’s System

◼ Address line 1 – 30

a/n

◼ Address line 2 – 30

a/n

◼ City – 18 a/n

◼ State – 2 a/n

◼ Zip – 5n

◼ Product Code – 7 a/n

◼ Cost – 6/2 d

Two companies agree on a program to transform data

semantics and format from one system to another:

Seller typically writes and maintains conversion software.

Now instead of two parties, many more buyers trade

electronically; this causes the seller to make a

different conversion program for each buyer:

Now each buyer wants to get prices and trade with many sellers;

many middleware conversion programs must be implemented:

EDI/XML (con’t)

◼ Add to this the fact that all the companies have
different computer types, operating systems,
communication protocol (SNA, DECNET, IPX,
TCP/IP, …), and physical data communication
networks

◼ EDI (Electronic Data Interchange) standards had
been developed since 1970 (ANSI X12 in US and
EDIFACT in Europe)

◼ However no two EDI standards used the same
approach, none were web enabled, none were
totally platform independent, and many are very
expensive and require special VAN (value added
networks)

Format Comparison

◼ Fixed Length (file/record):

◼ Doe John

◼ EDI (defined field and record separators):

◼ NM1*1B*1*Doe*John

◼ XML:

◼ <NAME>

◼ <LAST>Doe</LAST>

◼ <FIRST>John</FIRST>

◼ </NAME>

XML is “plain text”, other formats are typically binary

EDI Cost

◼Traditional EDI

◼ $40,000 to $120,000 for software

◼ 25 cents to $1 per transaction

◼ Internet Based EDI (with or without

XML)

◼ $300 to $50,000 for software

◼ No transmission charge

EDI Market Shares

◼Traditional EDI – about 30%

◼ Internet Based EDI – about 20%

◼XML Based – 30% (fastest growing)

◼Proprietary – 5%

◼Other (old fashion file transfer)– 15%

XML (and JSON) will be the Heart of the

B2B Internet

◼ XML will eventually replace today’s EDI formats
for defining the information that is electronically
exchanged between companies (B2B E-
Commerce)

◼ XML is faster to implement, has lower
maintenance costs, and is more reliable than
EDI formats and processing

◼ Internet B2B will mean significant cost
reductions for business, for example estimates:
◼ 14 % reduction in the cost to build a car in that

industry

◼ 5 to 40% reduction in other industries

XML Structure

◼An XML document may have two
parts:

◼A DTD (Document Type Definition) or
XML Schema which defines the
format (type and name of document
items)

◼The body of the document, which
contains the content and the “names”
of the content items

XML Structure (con’t)

◼ For an XML document to be “well-formed” it

must meet the well-formedness constraints

(WFC’s) defined in the 1.0 Recommendation

◼ For an XML document to be “valid”, it must

meet the validity constraints (VC’s) defined in

the 1.0 Recommendation and expressed in a

DTD or XML Schema

◼ DTD’s and XML Schemas will be discussed

later

XML Body Formatting
[well-formed]

◼ XML format is more strict than HTML:

◼ Elements (except empty elements) must have
start and end tags; for example in HTML you
can have a <P> without a </P>; not so in
XML

◼ Empty elements (one without a closing tag)
must end with / (ie <myTag/>)

◼ All elements must be nested correctly; for
example in HTML you can start <H2><P>
and end with </H2></P>; in XML you must
end with </P></H2>

XML Body Formatting (con’t)

◼ All attributes must be in quotation marks; in

HTML only certain attributes must be in quotes

such as strings and URL’s.

◼ Attribute names must be unique within an

element, and attribute values cannot contain

the symbol ‘<‘

◼ XML is case sensitive, and tags are lower

case

◼ “Namespaces” may be defined using URI’s

(universal resource indicators) so that tag

naming conflicts do not arise

XML Data Structures

◼Many data structures can be set up

in XML

◼The most common is a “tree

structure”

◼Others include “graphs” and

“tables”, but these are beyond the

scope of this course

XML Hierarchy of Elements

◼ XML Body’s

have a

hierarchical

arrangemen

t of

information

◼ For

example, a

list of books

can be

visualized

as shown

here

◼ BookList is

the “root”

element

“Tree Structure”

XML Data File Format (.xml)
[Version is specified in the “prolog” , lines before the root element]

◼ <?xml version=“1.0”?>

◼ <BookList>

◼ <Book>

◼ <Name>…</Name>

◼ <Author>…</Author>

◼ <Publisher>…</Publisher>

◼ </Book>

◼ <Book>

◼ <Name>…</Name>

◼ <Author>…</Author>

◼ <Publisher>…</Publisher>

◼ </Book>

◼ <Book>

◼ <Name>…</Name>

◼ <Author>…</Author>

◼ <Publisher>…</Publisher>

◼ </Book>

◼ </BookList>

Sample XML File (books.xml)

◼ <?xml version=“1.0”?>

◼ <BookList>

◼ <Book>

◼ <Name>Database Processing</Name>

◼ <Author>Kroenke</Author>

◼ <Publisher>Prentice Hall</Publisher>

◼ </Book>

◼ <Book>

◼ <Name>Modern Systems Analysis and Design</Name>

◼ <Author>Hoffer, George, Valacich</Author>

◼ <Publisher>Addison Wesley</Publisher>

◼ </Book>

◼ <Book>

◼ <Name>Data and Computer Communications</Name>

◼ <Author>Stallings</Author>

◼ <Publisher>Prentice Hall</Publisher>

◼ </Book>

◼ <Book>

◼ <Name>An Invitation to Computer Science</Name>

◼ <Author>Schneider and Gersting</Author>

◼ <Publisher>PWS</Publisher>

◼ </Book>

◼ <Book>

◼ <Name>Java, How to Program</Name>

◼ <Author>Deitel and Deitel</Author>

◼ <Publisher>Prentice Hall</Publisher>

◼ </Book>

◼ </BookList>

Note “.xml” extension

◼ <?xml version = "1.0"?>

◼ <letter>

◼ <contact type = "from">

◼ <name>John Doe</name>

◼ <address1>123 Main St.</address1>

◼ <address2></address2>

◼ <city>Anytown</city>

◼ <state>Anystate</state>

◼ <zip>12345</zip>

◼ <phone>555-1234</phone>

◼ <flag id = "P"/>

◼ </contact>

◼ <contact type = "to">

◼ <name>Joe Schmoe</name>

◼ <address1>Box 12345</address1>

◼ <address2>15 Any Ave.</address2>

◼ <city>Othertown</city>

◼ <state>Otherstate</state>

◼ <zip>67890</zip>

◼ <phone>555-4321</phone>

◼ <flag id = "B"/>

◼ </contact>

◼ <paragraph>Dear Sir,</paragraph>

◼ <paragraph>It is our privilege to inform you about our new

◼ database managed with XML. This new system will allow

◼ you to reduce the load of your inventory list server by

◼ having the client machine perform the work of sorting

◼ and filtering the data.</paragraph>

◼ <paragraph>Sincerely, Mr. Doe</paragraph>

◼ </letter>

XML

File for

A letter

Character Handling

◼XML can also handle international
character sets

◼Unicode (ISO-10646) is the character
set used

◼A “character encoding” (mapping of the
character set to particular bit patterns)
can be specified in the XML prolog and
default is UTF-8 (ASCII)

Language Handling

◼For each tag holding character data, a

language (locale) can be specified via a

language code and optionally a country

code (for “dialects”):

◼ <paragraph xml:lang=“en-US”>…some

text…</paragraph>

◼You can also make up your own

languages !

ISO Codes

◼ Common ISO 639
Language Codes:
◼ ar Arabic

◼ ch Chinese

◼ de German

◼ es Spanish

◼ fr French

◼ it Italian

◼ ja Japanese

◼ ru Russian

◼ Common ISO 3166
Country Codes:
◼ CA Canada

◼ CN China

◼ DE Germany

◼ EN England

◼ ES Spain

◼ FR France

◼ IT Italy

◼ JA Japan

◼ RU Russia

◼ US United States

Producing XML Files

◼ XML files are just text files and can be

manually created

◼ The most common way the files are produced

is by a program (ie C++, PHP, or Java

program) which inputs an SQL statement,

retrieves the indicated data from the relational

database, and outputs the data in the desired

XML format

◼ Latest versions of major programs and

databases have features to export data into

XML format

Reading (“parsing’) an XML

Document

◼ A software program called an XML Parser is
used to read and process an XML document

◼ These programs are typically written in Java,
C++, PHP, or Python

◼ A number of general purpose parsers are freely
available:
www.xml.com/xml/pub/Guide/XML_Parsers

◼ Parsers usually are of two types: DOM, or SAX

◼ Parsers that use a DTD (or XML Schema) are
called “validating” parsers

XML Parsing

SAX Parsers

◼ “Simple API for XML”

◼ As the XML document is scanned, events are
generated for the various starting and ending
tags and text contained in tags

◼ A user’s application writes event handler
functions to take specific actions when these
events occur (the event object returns the tag
or text encountered)

◼ Modern SAX parsers are usually written in
Java or PHP

DOM Parsers

◼ A DOM Parser reads the entire XML
document into the computer’s memory in the
DOM format (tree structure)

◼ Browsers use the DOM approach, IE’s built in
parser is called “msxml”

◼ The DOM model defines properties and
methods for the XML “document” and the
“nodes” in the document tree

◼ These properties and methods can be used
via JavaScript to manipulate an XML
document (such as creating dynamic HTML)

Other Parsers

◼Some applications use special
“embedded” parsers

◼These embedded parsers may be
special purpose for a particular type of
XML document (particular DTD)

◼The embedded parses are usually
faster and take up less memory that a
general purpose parser

Processing (“parsing”) XML in a

Web Page

◼Built-In (in Browser)

◼Java Applets

◼ActiveX Controls

◼Processing on Server

Embedded

◼An XML document can be “embedded”
in an HTML file so that the data can be
“presented”

◼An XML document is embedded in an
HTML file via the XML tag, and the ID of
the XML tag is the name of the DSO
(data source object) created

◼The embedded XML file is called a
“data island”

◼ <HTML><BODY>

◼ <XML ID = "xmlDoc">

◼ <BookList>

◼ <Book>

◼ <Name>Database Processing</Name>

◼ <Author>Kroenke</Author>

◼ <Publisher>Prentice Hall</Publisher>

◼ </Book>

◼ <Book>

◼ <Name>Modern Systems Analysis and Design</Name>

◼ <Author>Hoffer, George, Valacich</Author>

◼ <Publisher>Addison Wesley</Publisher>

◼ </Book>

◼ <Book>

◼ <Name>Data and Computer Communications</Name>

◼ <Author>Stallings</Author>

◼ <Publisher>Prentice Hall</Publisher>

◼ </Book>

◼ <Book>

◼ <Name>An Invitation to Computer Science</Name>

◼ <Author>Schneider and Gersting</Author>

◼ <Publisher>PWS</Publisher>

◼ </Book>

◼ <Book>

◼ <Name>Jave, How to Program</Name>

◼ <Author>Deitel and Deitel</Author>

◼ <Publisher>Prentice Hall</Publisher>

◼ </Book>

◼ </BookList>

◼ </XML>

◼ <TABLE BORDER = "1" DATASRC = "#xmlDoc">

◼ <THEAD> <TR>

◼ <TH>NAME</TH>

◼ <TH>AUTHOR</TH>

◼ <TH>PUBLISHER</TH>

◼ </TR> </THEAD>

◼ <TR>

◼ <TD></TD>

◼ <TD></TD>

◼ <TD></TD>

◼ </TR>

◼ </TABLE>

◼ </BODY></HTML>

 Table Repeater

embedXML.html

External XML File

◼ The XML tag can also refer to an external XML file:

◼ <HTML><BODY>

◼ <XML ID = "xmlDoc“ SRC = “books.xml”></XML>

◼ <TABLE BORDER = "1" DATASRC = "#xmlDoc">

◼ <THEAD><TR>

◼ <TH>NAME</TH>

◼ <TH>AUTHOR</TH>

◼ <TH>PUBLISHER</TH>

◼ </TR></THEAD>

◼ <TR>

◼ <TD></TD>

◼ <TD></TD>

◼ <TD></TD>

◼ </TR>

◼ </TABLE>

◼ </BODY></HTML>

ExternalXML.html

No longer

directly

supported in

some

browsers !

Using an Applet

◼ One can write (or use an existing Java
Applet) to read an XML file and to process it

◼ The processing and display can be done
entirely within the Applet; that is, the Applet
Java code can display the information on the
web page (see later example of this)

◼ Alternatively, an Applet can turn the XML file
into a DSO (data source object)
◼ As a DSO the information can be processed as

has been shown in previous material; the most
common way to do it is in an HTML table (see next
slide)

◼ <HTML><HEAD><TITLE>XML</TITLE></HEAD>

◼ <BODY>

◼ <H1>Reading List</H1>

◼ <APPLET CODE="com.ms.xml.dso.XMLDSO.class" WIDTH="100%"

◼ HEIGHT="25" ID="xmldso" MAYSCRIPT="true">

◼ <PARAM NAME="url" VALUE="books.xml">

◼ </APPLET>

◼ <TABLE ID="table" BORCER="2" WIDTH="100%"

◼ DATASRC="#xmldso" CELLPADDING="5">

◼ <THEAD>

◼ <TR>

◼ <TH>TITLE</TH>

◼ <TH>AUTHOR</TH>

◼ <TH>PUBLISHER</TH>

◼ </TR>

◼ </THEAD>

◼

◼ <TR>

◼ <TD VALIGN="top"><DIV DATAFLD="Name"

◼ DATAFORMATS="HTML"></DIV></TD>

◼ <TD VALIGN="top"><DIV DATAFLD="Author"

◼ DATAFORMATS="HTML"></DIV></TD>

◼ <TD VALIGN="top"><DIV DATAFLD="Publisher"

◼ DATAFORMATS="HTML"></DIV></TD>

◼ </TR>

◼

◼ </TABLE>

◼ </BODY></HTML>

xmlApplet.html

XML Parsing via Applets

◼ Use a “canned” applet
◼ Like: com.ms.xml.dso.XMLDSO.class

◼ Write your own applet and use an available XML
parser class (typically covered in a Java
Programming class)
◼ There are two basic types:

◼ SAX Parsers – event oriented – “call back”

◼ DOM Parsers – turns XML document into DOM representation
in memory

◼ www.apache.org has examples of both of these

◼ Also Sun [JAXP – java.sun.com/xml/download.html] and IBM
[www.alphaworks.ibm.com/formula/xml] have free versions):

◼ Write your own Java parser (for example to minimize
memory and download time)

http://www.apache.org/

Sample XML Quiz File
◼ <?xml version=“1.0”?>

◼ <Test>

◼ <Version>

◼ 1.0

◼ </Version>

◼ <Encrypt>

◼ No

◼ </Encrypt>

◼ <Password>

◼ apples

◼ </Password>

◼ <Description>

◼ Intro to Memphis - Test 1

◼ </Description>

◼ <Mode>

◼ Trial

◼ </Mode>

◼ <EMail>

◼ imabyte@cbu.edu

◼ </EMail>

◼ <Time>

◼ 60

◼ </Time>

◼ <TotalPoints>

◼ 100

◼ </TotalPoints>

◼ <Question>

◼ <Sort>

◼ 1

◼ </Sort>

◼ <Keyword>

◼ Beale Police

◼ </Keyword>

◼ <Problem>

◼ What is located at the star on the map ?

◼ </Problem>

◼ <Image>

◼ downtown.gif

◼ </Image>

◼ <Chapter>

◼ 1

◼ </Chapter>

◼ <PageRef>

◼

◼ </PageRef>

◼ <Difficulty>

◼ Hard

◼ </Difficulty>

◼ <Type>

◼ Multiple

◼ </Type>

◼ <Points>

◼ 50

◼ </Points>

◼ <ShortAnswer>

◼

◼ </ShortAnswer>

◼ <Explain>

◼ The map shows the downtown area around Beale.

◼ </Explain>

◼ <CorrectChoice>

◼ 2

◼ </CorrectChoice>

◼ <Choice>

◼ Graceland

◼ </Choice>

◼ <Choice>

◼ Beale Street Police Station

◼ </Choice>

◼ <Choice>

◼ CBU

◼ </Choice>

◼ </Question>

◼

◼ <Question>

◼ <Sort>

◼ 2

◼ </Sort>

◼ <Keyword>

◼ Interstates

◼ </Keyword>

◼ <Problem>

◼ What is the junction of the two interstates on the map called ?

◼ </Problem>

◼ <Image>

◼ junction55_240.gif

◼ </Image>

◼ <Chapter>

◼ 3

◼ </Chapter>

◼ <PageRef>

◼ 34

◼ </PageRef>

◼ <Difficulty>

◼ Medium

◼ </Difficulty>

◼ <Type>

◼ Multiple

◼ </Type>

◼ <Points>

◼ 50

◼ </Points>

◼ <ShortAnswer>

◼

◼ </ShortAnswer>

◼ <Explain>

◼ </Explain>

◼ <CorrectChoice>

◼ 1

◼ </CorrectChoice>

◼ <Choice>

◼ Malfunction Junction

◼ </Choice>

◼ <Choice>

◼ Mixmaster

◼ </Choice>

◼ <Choice>

◼ Disaster Zone

◼ </Choice>

◼ <Choice>

◼ Ground Zero

◼ </Choice>

◼ </Question>

◼ </Test>

Test Data After Parsing into Web Page
[Uses embedded special purpose parser in a Java Applet]

Question Data After Parsing into Web Page
[Java Applet]

Server Processing

◼The most common processing

technique on the server side is for a

Java Servlet to read the XML file and

then dynamically create an HTML page

which it sends to the client browser

◼This can also be done with Java Server

Pages or PHP (discussed in a later

session)

DTD & Schemas

◼ Both DTD’s and Schema’s can be used to
describe the valid contents of an XML
document

◼ DTD is the original method based on SGML

◼ Version 1.0 of XML Schema was adopted in
May of 2001 and is the newer method

◼ A problem with DTD was that they were not
themselves written in XML which made it
difficult for servers to standardize the
formulation and exchange of document
specifications

Document Type Definition (DTD Files)

◼ A DTD is optional, but is needed for “standardized”
types of information exchange

◼ DTD’s can be used to “validate” an XML document or to
facilitate production of XML files

◼ The DTD is optional, but a “type-valid” XML document
must have a DTD or XML Schema

◼ The DTD can be in the XML document or be referenced
via a URL in the prolog section of the XML file:
◼ <?xml version = "1.0”?>

◼ <!DOCTYPE letter SYSTEM "letter.dtd">

◼ For database applications of XML, the DTD corresponds
to a view (“Create View xxx AS…”

DTD (con’t)

◼ Specifying the rules that structure a document is done with the EBNF
(Extended Backus-Naur Form) grammar [covered in CS/ITM 171/172
courses & textbook]:

◼ For parent elements:

◼ <!ELEMENT elementName (subElement1@, subElement2@, …)>

◼ Where @ is blank for one subElement of that type, + for one or
more, * for any number, or ? for zero or one

◼ For child elements:

◼ <!ELEMENT elementName dataSpecs>

◼ For attributes of an element:

◼ <!ATTLIST elementName attributeName dataSpecs>

◼ dataspecs involve a data type (CDATA for character data
[including ‘variables’], #PCDATA for parseable character data
[text only], EMPTY, enumerated lists, etc.) and a default value
type (#IMPLIED – not required, #REQUIRED,
“specificDefaultValue”, etc.)

◼ See XML references for full specifications

XML Document and its DTD

◼ <? xml version=“1.0”?>

◼ <!DOCTYPE dept SYSTEM
“dept.dtd”>

◼ <dept>

◼ <emp id =“jd”>

◼ <name>John Doe</name>

◼ <email>
jd@abc.com</email>

◼ </emp>

◼ <emp id =“ib”

◼ <name>Ima Byte>

◼ <url
href=“www.abc.com/~ib/”/>

◼ </emp>

◼ </dept>

◼ <!ELEMENT dept (emp*)>

◼ <!ELEMENT emp (name,

(email | url))>

◼ <!ATTLIST emp id CDATA

#REQUIRED)

◼ <!ELEMENT name

(#PCDATA)>

◼ <!ELEMENT email

(#PCDATA)>

◼ <!ELEMENT url EMPTY>

◼ <!ATTLIST url href CDATA

#REQUIRED>

http://www.abc.com/~ib/

DTD for Letter

◼ <!ELEMENT letter (contact+, paragraph+)>

◼ <!ELEMENT contact (name, address1, address2, city, state,

◼ zip, phone, flag)>

◼ <!ATTLIST contact type CDATA #IMPLIED>

◼ <!ELEMENT name (#PCDATA)>

◼ <!ELEMENT address1 (#PCDATA)>

◼ <!ELEMENT address2 (#PCDATA)>

◼ <!ELEMENT city (#PCDATA)>

◼ <!ELEMENT state (#PCDATA)>

◼ <!ELEMENT zip (#PCDATA)>

◼ <!ELEMENT phone (#PCDATA)>

◼ <!ELEMENT flag (EMPTY)>

◼ <!ATTLIST flag id CDATA #IMPLIED>

◼ <!ELEMENT paragraph (#PCDATA)>

◼ <?xml version = "1.0"?>

◼ <!DOCTYPE letter SYSTEM "letter.dtd">

◼ <letter>

◼ <contact type = "from">

◼ <name>John Doe</name>

◼ <address1>123 Main St.</address1>

◼ <address2></address2>

◼ <city>Anytown</city>

◼ <state>Anystate</state>

◼ <zip>12345</zip>

◼ <phone>555-1234</phone>

◼ <flag id = "P"/>

◼ </contact>

◼ <contact type = "to">

◼ <name>Joe Schmoe</name>

◼ <address1>Box 12345</address1>

◼ <address2>15 Any Ave.</address2>

◼ <city>Othertown</city>

◼ <state>Otherstate</state>

◼ <zip>67890</zip>

◼ <phone>555-4321</phone>

◼ <flag id = "B"/>

◼ </contact>

◼ <paragraph>Dear Sir,</paragraph>

◼ <paragraph>It is our privilege to inform you about our new

◼ database managed with XML. This new system will allow

◼ you to reduce the load of your inventory list server by

◼ having the client machine perform the work of sorting

◼ and filtering the data.</paragraph>

◼ <paragraph>Sincerely, Mr. Doe</paragraph>

◼ </letter>

XML file for

a letter with

external DTD

specified

Using DTD’s to generate XML Files

◼A common way XML files are produced

is by a program (ie C++, PHP, or Java

program) which:

◼ inputs an SQL statement and a DTD file

(specifying the format of the output XML

data)

◼ retrieves the indicated data from the

relational database

◼ and outputs the data in the XML format

Standardized Markup Languages

◼MathML for math expressions

◼ Replaces earlier special packages like TeX

◼FpML – Financial Products Markup
Language – exchange of financial
information

◼ ebXML - Electronic Business XML, see
next slide

ebXML

Other Industry Custom DTD’s

◼ Industry consortiums have developed to define
DTD’s that will be used for commerce and other
communication needs on a particular industry
or group. Some are:
◼ RosettaNet – standard DTD’s and process flow for

buyers and sellers

◼ XEDI – standard mapping from legacy systems to
XML (Aerospace Industries Association)

◼ BizTalk – standard XML grammar for processing
non-XML data

◼ XBRL (formerly XFRL) – standard DTD for reporting
financial data

◼ PDML – Product Data Markup Language

XML Schemas

◼The newer way to define an XML
document content’s is with XML
Schemas

◼These schemas are themselves XML
documents

◼XML Schemas use namespaces and can
more precisely define document contents
in a variety of ways such as specific min
and max cardinalities on elements, more
data types (int, float, boolean, etc.),
regular expressions, inheritance of
schemas, etc.

Extensible Style Language (XSL)

◼ Another way to express XML document format
is via XSL (Extensible Style Language); an
HTML document can have multiple XSL’s
(such as different display or data sort orders)

◼ CSS can also be used

◼ CSS and XSL data can be in the XML
document or referenced separately via URL

◼ A subset of XSL called XSLT can be used to
transform an XML document into a target
format (ie HTML document or other formats (ie
pdf))

JSON
[http://www.json.org/]

◼ JSON (JavaScript Object Notation) is a lightweight data-interchange format

◼ It is easy for humans to read and write, and it is easy for machines to parse

and generate

◼ It is based on a subset of the JavaScript Programming Language, Standard

ECMA-262 3rd Edition - December 1999

◼ JSON is a text format that is completely language independent but uses

conventions that are familiar to programmers of the C-family of languages,

including C, C++, C#, Java, JavaScript, Perl, Python, and many others.

These properties make JSON an ideal data-interchange language.

◼ JSON is built on two structures:

◼ A collection of name/value pairs. In various languages, this is realized as an

object, record, struct, dictionary, hash table, keyed list, or associative array

◼ An ordered list of values. In most languages, this is realized as an array, vector,

list, or sequence

◼ These are universal data structures, and virtually all modern programming

languages support them in one form or another

http://javascript.crockford.com/
http://www.ecma-international.org/publications/files/ecma-st/ECMA-262.pdf

JSON (con’t)

Example JSON Format Data

◼ { "firstName": "John",

◼ "lastName": "Smith",

◼ "isAlive": true,

◼ "age": 25,

◼ "address":

◼ { "streetAddress": "21 2nd Street",

◼ "city": "New York",

◼ "state": "NY",

◼ "postalCode": "10021-3100" },

◼ “phoneNumbers": [

◼ { "type": "home",

◼ "number": "212 555-1234" },

◼ { "type": "office",

◼ "number": "646 555-4567" }]

◼ }

JSON (con’t)

JSON (con’t)

JSON (con’t)

JSON & JavaScript

◼ Since JSON was derived from JavaScript and its syntax is (mostly) a

subset of the language, it is often possible to use the JavaScript

eval() function to parse JSON data

◼ var p = eval('(' + json_string + ')');

◼ This is unsafe if the string is untrusted

◼ Instead, a JSON parser library or JavaScript's native JSON support

should be used for reading and writing JSON

◼ var p = JSON.parse(json_string);

◼ A correctly implemented JSON parser only accepts valid JSON,

preventing potentially malicious code from being inadvertently

executed

◼ Since 2010, web browsers such as Firefox and Internet Explorer have

included support for parsing JSON

◼ As native browser support is more efficient and secure than eval(),

native JSON support is included in Edition 5 of the ECMAScript

standard

Simple Object Access Protocol

◼ “SOAP” is a ‘lightweight’ protocol for
information exchange in a distributed
environment; instead of a more full featured
‘heavyweight’ protocol such as DCOM,
CORBA-IIOP, Java RMI

◼ Encodes information in an XML or JSON wrapper, thus
is text based and vendor neutral

◼ Typically used for RMI (remote method invocation)
◼ Interpret a remote method’s parameter needs

◼ Place those parameters in an XML document using a specific
layout to invoke the remote method (“web services”)

◼ SOAP uses HTTP protocol

www.w3.org/tr/soap

SOAP Uses HTTP Protocol

HTTP header indicates destination, content format (XML here), …

SOAP Envelope

◼ <?xml>

◼ <soap:Envelope …>

◼ <soap:Header>

◼ <soap:Body>

▪ …

◼ </soap:Body>

◼ </soap:Header>

◼ </soap:Envelope>

◼ Header is optional

◼ For method call: first
child in body has to
be name of the
remote method

◼ For method return
info: first node in
body is response
name and next node
is return data

Example Remote Procedure Call

◼ POST /StockQuote HTTP/1.1

Host: www.stockquoteserver.com

Content-Type: text/xml; charset="utf-8"

Content-Length: nnnn

SOAPAction: "Some-URI"

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-

ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

<m:GetLastTradePrice xmlns:m="Some-URI">

<symbol>DIS</symbol>

</m:GetLastTradePrice>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Remote method call Remote method arguments

Example Return Information

◼ HTTP/1.1 200 OK

Content-Type: text/xml; charset="utf-8"

Content-Length: nnnn

<SOAP-ENV:Envelope

xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-

ENV:encodingStyle="http://schemas.xmlsoap.org/soap/enc

oding/"/>

<SOAP-ENV:Body>

<m:GetLastTradePriceResponse xmlns:m="Some-

URI">

<Price>34.5</Price>

</m:GetLastTradePriceResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Method response Method return data

Web Services

◼ Web Services are applications that can interact
with each other across the Intra/Internet using
open Web Standards

◼ Self-describing

◼ Platform and implementation neutral

◼ Developed using open standards for
description, discovery, and invocation

◼ Connect business partners’ business processes
together

◼ Typically transactional, requiring integration with
existing systems

Web Services (con’t)

◼ One of the most important ideas in creating
scalable Web sites is to decompose
programs into modular Web services

◼ The Web pages will no longer read a
database directly, process the business logic
and spew out HTML

◼ Instead we would subdivide our pages into
multiple sections, and render each section by
calling different Web services

◼ In this the load is spread across multiple
servers

Web Services - Basics

◼Expose services to other processes

◼ Internet and intranet

◼Black boxes (Encapsulation)

◼ Component-like, reusable

◼Not dependent on one platform

◼ .NET, J2EE, Open source (Apache, PHP)

◼Based on open standards

◼ HTTP, XML, WSDL, UDDI, and SOAP

Based on XML & SOAP

◼Used for data formatting

◼A consistent means of describing the
data layout

◼A means to build self-describing data
sets

◼A text file format

◼Easily parsed by industry standard
methods

◼Operating system and language
independent

Other Related Standards

◼ UDDI (Universal Description, Discovery, and

Integration) - allows businesses to register with a

directory for advertising the services

◼ WSDL (Web Service Description Language) -

defines the service interface and its

implementation characteristics

◼ SOAP (Simple Object Access Protocol) - allows

applications to call object methods, or functions,

residing on remote servers

Web Services Infrastructure

Discovery

Request (SOAP)

http://Aservice.com

HTML or XML with link to WSDL

Service Description (WSDL)

http://Aservice.com/?WSDL

XML with service descriptions

http://Aservice.com/svc

XML/SOAP BODY

Web
Service

Web
Service

Consumer

UDDI

Find a Service

http://www.uddi.org

Link to WSDL document

REST

◼ Representational state transfer (REST) is a software

architectural style that defines a set of constraints to be

used for creating Web services

◼ Web services that conform to the REST architectural

style, called RESTful Web services, provide

interoperability between computer systems on the Internet

◼ RESTful Web services allow the requesting systems to

access and manipulate textual representations of Web

resources by using a uniform and predefined set of

stateless operations

◼ Other kinds of Web services, such as SOAP Web

services, expose their own arbitrary sets of operations

Copyright Dan Brandon, PhD, PMP

80

https://en.wikipedia.org/wiki/Software_architecture
https://en.wikipedia.org/wiki/Web_service
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Web_resource
https://en.wikipedia.org/wiki/Stateless_protocol
https://en.wikipedia.org/wiki/SOAP

Web Services Benefits

◼Finding New Partners and

Interoperability

◼Universal Accessibility – anywhere,

anytime, any platform

◼Universally Acceptable Standards

◼Efficient Application Sharing – existing

application data can be shared as

identical platform is not required on both

ends

Barriers to Diffusion of Web Services

◼ Forrester Research:

◼ Security Issues (27%)

◼ Lack of knowledge (27%)

◼ Limited tools (19%)

◼ Employee resistance (15%)

◼ No business case (12%)

◼ Lack of standards (7%)

◼ No services (7%)

The .NET Framework Architecture

(Microsoft)

Microsoft .NET Framework

System Services

Common Language Runtime

ASP.NET

Web Forms Web Services
Windows Forms

Services Framework

Base Data Debug ...

Open Source ->XML-RPC

◼ XML-RPC is a spec and a set of

implementations that allow software running

on disparate operating systems, running in

different environments to make procedure

calls over the Internet.

◼ It's remote procedure calling using HTTP as

the transport and XML as the encoding.

◼ It's designed to be as simple as possible,

while allowing complex data structures to be

transmitted, processed and returned.

XML-RPC (con’t)

◼ Here's a simple PHP example that calls a function:
◼ examples.getStateName(48)

◼ residing at betty.userland.com/RPC2 to get an
American state based on an index:
◼ include("xmlrpc.inc");

◼ $thestate=48;

◼ $f=new xmlrpcmsg('examples.getStateName', array(new
xmlrpcval($thestate, "int")));

◼ $c=new xmlrpc_client("/RPC2", "betty.userland.com", 80);

◼ $r=$c->send($f); $v=$r->value();

◼ if (!$r->faultCode()) {
◼ print "State number $thestate is " . $v->scalarval() . "
"; print

"<HR>I got this value back
<PRE>" . htmlentities($r-
>serialize()). "</PRE><HR>\n";

◼ } else {
◼ print "Fault: "; print "Code: " . $r->faultCode() . " Reason '" .$r-

>faultString()."'
";

◼ }

XML-RPC (con’t)

◼ This is the XML generated by xmlrpcmsg():

◼ <?XML VERSION="1.0"?>

◼ <methodCall>

◼ <methodName>

▪ examples.getStateName

◼ </methodName>

◼ <params>

▪ <param> <value><i4>48</i4></value> </param>

◼ </params>

◼ </methodCall>

XML-RPC (con’t)

◼ Creating a Web service is as simple as creating a Web Services
API and receiving calls.

◼ Suppose we have a web server at 192.168.0.1 and we create an
XML-RPC server file named rpc2.php to handle
example.getStateName() requests:
◼ include("xmlrpc.inc"); include("xmlrpcs.inc");

function GetStateName($params) {
◼ $statenum = $params->getParam(0); switch($statenum)

▪ { case 1: $name="Alabama"; break;

▪ : //…

▪ case 50: $name="Wyoming"; break;

▪ default: $name="Unknown"; break; }

▪ return new xmlrpcresp(new xmlrpcval($name, "string")); }
$s=new xmlrpc_server(array("examples.getStateName" => array("function" =>
"GetStateName")));

◼ We could call this function using:
◼ include("xmlrpc.inc");

◼ $thestate=48;

◼ $f=new xmlrpcmsg('examples.getStateName', array(new xmlrpcval($thestate,
"int")));

◼ $c=new xmlrpc_client("/rpc2.php", "192.168.0.1", 80);

References

◼ Amazon Web Services in Action by Andreas

Wittig and Michael Wittig

◼ RESTful Web Services by Leonard

Richardson , Sam Ruby , et al

◼ Service Design Patterns: Fundamental

Design Solutions for SOAP/WSDL and

RESTful Web Services (Addison-Wesley

Signature Series (Fowler)) by Robert

Daigneau

Copyright Dan Brandon, PhD, PMP

88

Homework

◼No assignments for this lesson

Copyright Dan Brandon, PhD, PMP

89

