Internet Programming

Programming and Algorithms

Dan Brandon, Ph.D., PMP

Copyright Dan Brandon, PhD, PMP

Half of the high-paying jobs in

America now require this skill
By Catev Hill in MarketWatch [www marketwatch com]

Published: Ang 20 2016 2:30 am ET

Roughly half of the jobs in the top income quartile — defined as those
paying 357000 or more per year — are in occupations that commonly
require applicants to have at least some computer coding knowledge or
skill, according to an analysis of 26 million U_S. online job postings
released this month by job market analytics firm Burning Glass and
Oracle Academy, the philanthropic arm of Oracle focused on computer
science education, in Redwood City, Calif. In simple terms, coders write
the instructions that tell computers what to do; in-demand programming
languages include SQL, Java, JavaScript, C# and Python.

This high number 1s thanks, in part, to the fact that it"s not just
technology jobs that now require at least some coding knowledge_ says
Alison Derbenwick Miller, the vice president of Oracle Academy.
“Computing has become a tool 1in every industry_” which means that
coding knowledge 1s now needed for workers across fields, she says.
Indeed, everyone from business people who work with data to designers
and marketers who create websites to scientists who conduct research
now need at least some coding knowledge.

Employers and employees — even those who aren’t in the technology
field — say the same. Jake Lane, a growth analyst at lawn care company
LawnStarter. says that “having some knowledge of coding 1s essential
for job seekers these days,” as it can help them understand the tasks of
— and work more effectively with — other departments, including their
tech and engineering

https://www.khanacademy.org/computing/computer-programming/programming/intro-to-programming/v/programming-intro

Algorithm
Wikipedia:

= In mathematics,
computer science, and
other areas, an
algorithm is an effective
method expressed as a
finite list of well-defined
Instructions for
calculating a result

The Google Way

[Infoworld, 2/23/04]

The Google corporate philosophy Is
expressed In five principles:

= "Work on things that matter
= Affect everyone in the world
= Solve problems with algorithms if possible

= Hire bright people and give them lots of
freedom

= Don't be afraid to try new things”

m\Where did the word
“algorithm come from ?”

|Lamp doosn' work]

Don’t look ahead !

| ast name of Persian

mathematician TR
. A L- M

Mohammad ibn- - g
Ny i

Musa Al-Khowarizmi,
which sounds more
like algorithm when
written In Latin

Algorithms

Briefly: The systematic solution to a specific
problem, represented in a series of well defined

steps

Computer application - the steps are performed
by a computing agent, or the interaction between
a computing agent and some other form of
Intelligence (ie human)

What is Algorithm?

Is this an algorithm?

Chocolate “mousse’ :

= 1. Melt chocolate and 2 tablespoons water in double
boiler. Set aside.

= 2. Beat egg yolks until thick and lemon-colored, about 5
minutes.

= 3. Gently fold in 8 ounces of semi-sweet chocolate.
= 4. Reheat slightly to melt chocolate, if necessary.

= 5. Stir in 1 tablespoon of rum and vanilla. Beat egg whites
until frothy.

= 6. Beat in 2 tablespoons sugar until stiff peaks form.
= /. Gently fold whites into chocolate-yolk mixture.

= 8. Pour into individual serving dishes. Chill at least 4
hours.

= 9. Serve with whipped cream, if desired.
Makes 6 to 8 servings

Don’t look ahead !

What's wrong with the algorithm to
make chocolate mousse?

It uses words and phrases
whose meanings are not clear
to some people (it's ambiguous)

= double boller, fold in, frothy, stiff peaks form

To correct the mousse algorithm:

We’'d have to use
more specific and
well understood
terms to express
such things as
“frothy” and “fold”
to make It not so
ambiguous

Recipe with “Flow Chart”

Fecipe ¥
CHOCOLATE CAKE eraferte
4 oz, chocolate Jeggs £l
1 cup buter 1t=p vanlla 47
2 GUps sugar 1 cup flowr
Melt chocolate and butter. Stir sugar into reted Spread - || FerTve
chocolate Stirin egos andvanila M inflour, inFan frorn Creen
Spread HEx ingreased pan Bake at 250 for 40
rrirdtes or urtil inserted fork, cores out almost {3
clean Cool in pan before eaing.
Program Code —= Bike
d a 350
Declare variables Mot
chocolae eggs b {3 ="
butter vanilla Ry s
SUJEr flowr
rrix = retted ((4¥chocdl ae) + butten Test
rriz = ir (rrix + (2*5ugar)) Wth
Frix = Sir (Fix + (3¥eggs) + vanill 3 Fiork
bz = Fe + flour
spread (H<)

Whle nat clean fork)
bakue i, 250

Is this an algorithm?

1. Wet hair
2. Lather
3. Rinse

4. Repeat

Don’t look ahead !

What's wrong with the algorithm to
wash your hair?

It has no end !

To correct the hair-washing algorithm:

We'd have to say something
like:

= "Repeat steps 2 and 3 twice and
then stop to make it a finite
process.” e s

2. 1. Don't Overwash
<. .«\“"‘..- i) -
<2 Yl 3. 2. Fight Dryness
v ’ SR

4. 3. Nice And Gentle

5. 4. Avoid Hot Water

6. 5. Stick To The Status Quo
7. 6. Less Is More

8.7. Press, Don't Rub

9. 8. Comb, Don't Brush

10. 9. Let The Scalp Relax

11. 10. Efficient Application
12. 11. Condition It Nice

1S THIS AN ALGORITHM?

1. Make a list of all the prime
numbers

2. Put the list iIn ascending order
3. Print each 10th element
4_ STOP Prime Number — a number that has

only two factors, itself and 1.

7 is prime because the only numbers
that will divide into it evenly are 1 and 7

1= F JFxfl=T7

Don’t look ahead !

What's wrong with this algorithm?

mOne of the steps Is
Impossible to do !

lPrime: 2113 5 7

[Composite: 4

To correct this algorithm:

We'd have to say something

like:
= "Make a list of the prime
numbers less than X”

So that It Is computable

1230507000
1013000170190
0230 0009290
. 937000
0011000
000590
1 057000
ne)©79@
0 0s3 95
1 lele

A Good Algorithm:

Provides a step-by-step process in the correct
order

S unambiguous

s “do-able”

Has an end

Provides some useful output or result

Characteristics of an Algorithm

Well-Defined Well-Defined
E—— \ / .
Clear and Characterls-tlcs of Eliitecness
Unambiguous an Algorithm
—— / \ .
Independent Ecaaible

CS Algorithm Definition

An algorithm Is a well-ordered
collection of unambiguous and
effectively computable
operations that when executed
produces a result and halts in a
finite amount of time

Writing An Algorithm

In order to write an algorithm, following things
are needed:
= The problem that is to be solved by this algorithm

= The constraints of the problem that must be
considered

= The input to be taken to solve the problem

= The output to be expected when the problem the
IS solved

= The solution to this problem, in the given
constraints

It follows that 1n order to write a
good algorithm, you must know..

The set of words that your
computing agent can
understand

The set of operations that your
computing agent is capable of
performing

The “Find The Maximum” Algorithm

Let’'s say | handed you 16 pieces of
paper, each of which had a number

on it
Now write down the process you

would go through to find the largest
of the numbers

)
. .“

‘|
.
.
!
4

Did your algorithm have all of
these features ?

Provides a step-by-step process in the
correct order

IS unambiguous

Is “do-able”

Has an end

Provides some useful output or result

How Do You Tell A Computer How
To Perform A Process?

1. You give It step by step
Instructions using a computer
language

2. The computer will perform those

steps In the order in which they are
presented to it

Tell A Computer How To Perform
A Process (con’t)

3.You can, however, tell the
computer to:

Start at a certain step, and
proceed sequentially step by
step

Repeat certain steps

Skip certain steps under certain
clrcumstances

In Other Words, The Computer Can
Perform Operations Three Ways:

Sequentially
Conditionally
Iteratively

The Branching/Conditional
Constructs

IF
IF/ELSE

Format of: IF
IF (THIS IS TRUE)

. DO SOMETHING;

Conditional (con’t)

Format of: IF/ELSE
IF (SOME CONDITION IS TRUE)
= DO SOMETHING;
ELSE
= DO SOMETHINGELSE;

Here 1s an example of when you
would use If:

IF (USER PRESSES THE ESCAPE KEY)
EXIT THE PROGRAM

IF 1T RAINS, VIL STAY AT HOME

"ONDITION! G> [RESULT]
Oo. 20O

Here Is an another example of when
ou would use if/else:

PROMPT USER FOR NUMBER OF HOURS
WORKED THIS WEEK

» IF (NUMBER OF HOURS <=40)
GROSS = RATE * HOURS

m ELSE
GROSS=(RATE*40)+(HOURS-40)*(RATE*1.5)

The Looping/Iterative
Construct:

= WHILE “loop” (‘ ‘

\—V

m The format for: WHILE
= WHILE (“THIS STATEMENT” IS TRUE)
DO SOMETHING:;

= (“SOMETHING” IS STATEMENT (s) THAT WILL
EVENTUALLY CAUSE “ THIS STATEMENT” TO
BE FALSE)

Loops (con’t)

mOther looping structures

()

Do ... While
Repeat...until
For ...

“Find The Maximum Value"
Algorithm

1. Say you have a stack of index cards with a
number on each one. You want to find the
largest number.

2. You look at the first number. It is the
largest so far so you set it aside as the "max".

3. You look at the next number. You
compare it to the "max" value. If its larger, it
becomes the max; otherwise discard It.

4. You repeat step 3 until you reach the end
of the "pile". The number set aside as the
max Is the largest.

Next, tell a computer how to do It.

Computers don't deal with "Index
cards”, "setting things aside" and
"piIeS"

They deal with values stored In
memory cells

In addition, data must be stored In
the memory cell(s) using a specific
format or structure

/O

In order to have the computer find the

maximum value, we have to give it
some Input and it will have to provide us

with some output

In other words, we have to give the
computer several data items that it must
store In the appropriately defined
memory cells

We refer to these memory cells as
variables:

In high school algebra, a variable
was a number with an unknown
value that was represented by a
letter (EX: x=2y + 3)

To a computer, a variable is a
storage cell in memory that can
store a single data item

Basic (Intrinsic) Items

There are some basic or “intrinsic’data
items (variable types) that an algorithm
might need to manipulate (each must be

stored in an appropriately-defined
memory cell):

m Integers

= Real numbers (floating point or real)
= Characters (text)

Complex Items

There are also some not-so-basic data
items that an algorithm might need to
manipulate (and each of these must be
stored in an appropriately defined
memory cell or cells):

= Character strings (names, etc.)

= Arrays (a series of numbers)

= Objects (user defined data items)
= Data Structures (Groups of Items)
Stacks (LIFO arrays)
Queues (FIFO arrays)
Trees

It IS necessary to use the correct type of
memory cell when storing data because:

Putting a value In a particular type of memory
cell (the memory cell has been defined to hold a
certain type) gives that value meaning or
context

Without structure, the data has no defined
meaning Its just 010110110111000

The computer has to know how to interpret
those 1's and O’s (bits)

= Perhaps as the ASCII or UNICODE code for a
character

= Perhaps as the binary representation for a number

Variable types (con’t)

Also, a value must be In the
appropriate type (format) so
that the program will only
perform appropriate processes
on that data (i.e. it won't try to
multiply characters)

Now that we know something
about writing algorithms, and
data types, we can make a
second attempted to re-write
the “find max” algorithm
assuming that our computlng
agent Is a basic comy , ¢

MAX = FIRST NUMBER
WHILE (MORE NUMBERS TO LOOK AT)

" {
GET NEXT NUMBER

IF THIS NUMBER IS BIGGER THAN MAX THEN
MAX = THIS NUMBER

"}
= OUTPUT MAX

Implementing the Algorithm -Programming

Writing the program

= Specific computer language

= Editor

Checking the program (not for interpreted languages)
= Compiling

= Removing syntax errors

= Linking

Running Program

= Debugging (removing runtime errors)

Languages

Machine Language
m Ones & Zeros

Assembly Language

High Level Languages
= Third Generation Languages
C and C++
COBOL
Fortran
Java
JavaScript (an interpreted language — no compiler)
PHP
Python
R

Representing Algorithms

Pseuodocode

Flowcharts

Dataflow Diagrams

Event Diagrams & Use Cases

Pseudocode

Informal language to express
algorithm

Not executed on computers

Consists only of action statements,
leaving out declarations

Avoids syntax detalls (ie
semicolons, etc)

start

Pseudocode:
mif ais greater than b
print “a is bigger” " 2 e

else
output "Reject”
endif
" else
. if testScore >= 80 then
- if classRank == 50 then
output “Accept"
else
output "Reject"

" endif
. > else
if testScore >= 70 then

it classRank >= 75 then
output "Accept"”
else

alert ("a is bigger”); e

output "Reject”
endif
endif
endif
stop

Flowcharts

A graphical representation of an algorithm or
portion thereof

Arrows - flowlines
Symbols
= rectangle (action) - some processing

= diamond (decision) - a decision is made

= trapezoid (i/0) - input is obtained, or data
output

= oval - a starting or stopping point

Sample Flowchart

Start

Get radius
from stdin

Calculate
area

Output
area to
stdout

Stop

When writing algorithms, we can use the
following flow control structures :

SEQUENTIAL

= Do this and then this
CONDITIONAL

= Do this or don't do this [if]
= Do this or do that [if/else]
REPETITION (LOOP)

= Do something until this happens
(repeat/until)

= While this is true do something

Elltr}.
szmmmm

coTrTEam divesor [podh of been
meEmibesrs

L3

FRIT “Typse Dasn inbaersers preater
tiam 0

L4

IRELT A%, B E

Bes . B - AT i
L
x

ASL . AR - B% E
L

*

FRIMNT &% E

If

A single selection structure
Selects or ignores an action
Pseudocode:

= if a is greater than b, then print “a more
than b’

JavaScript code
mif (a>Dh)

alert ("a more than b”);

1f/else

Double Selection

Pseudocode:

= |f a greater than b then
print “yes”
= else
print “no”
JavaScript code:
= if (@a>Db)
alert (“yes”);
= else
alert(“no”);

False True
Action

JavaScript while loop

while (some condition is true)
m statement or block of statements

count =1;

while (count <= 20)

= alert (count);

m count = count + 1; or count++;

What does this code do ?

While Cautions

Remember while tests condition
before repetitions!

Remember to initialize counter

Remember to include a
termination condition, so you do
not get an infinite loop

do/while loop

do
mstatement(s);

while (condition);

do/while does statement(s) first
time before testing condition

for

for (initial; test condition; increment)
= statement or block of statements

for (count =1; count <=20; count = count + 1)

= alert (count);
B can use: count++ instead of count = count+1

Structured Programming
[goto less programming]

Single entry for each control
structure

Single exit for each control
structure

Combine control structures by
m Stacking

Exit of one structure Is entry for another

m Nesting

Copyright: Dan Brandon, PhD

Single Entry - Single EXxit

@

Control
Structure

Copyright: Dan Brandon, PhD

acking Nesting

Nesting
Action Action o

> =

Action

Copyright: Dan Brandon, PhD

Action Action

NO

Max = First
Number

\ [®)

Find Maximum Algorithm
[“sentenel” = 0]

Get first number from user (enter zero to end)
MAX = first number
While (number not zero)
= {
If number greater than MAX then MAX = number
get next number from user

=}
Display MAX

Arrays

Consecutive cells in memory, of
a particular type

The array Is given a hame -
myArray

Cells are numbered
consecutively (starting with zero
In JavaScript)

Arrays (con’t)

Reference to individual cells is by

giving array name and relative

position (index or subscript) In

array:

= MyArray [12]

mJavasScript starts numbering from
zero, so this is the thirteenth item
In the array

MyArray

Cell 0

11

14

92

29

Cell 5

4

MyArray[2] is 92

“for”” loops — normally used with Arrays

[when you know how many times you want to do something]

for (1=0;1<n;I=I+1)

{

= //do something n times

}

Alternatively: for (1 = 0; 1 < n; 1++)

Functions

Programming languages typically have
functions some of which may be predefined,
and others can be created by the programmer

Functions can have input arguments and return
values

For example, one might create a function to
calculate pay:
= Pay(hourly-rate, hours-worked)

= Which would presumably multiply the two arguments
together and return the result

Object Orientation

In OO languages, objects are built and/or created (either directly or
thru classes)

These objects have associated:
= Properties
= Functions
For example if we have a “rectangle object”:
= Properties: length and width
= Functions: area and perimeter
Access to properties and functions is via an object (encapsulation):
= Object.property or Object.function

A type of object(class) can de derived from another class
(inheritance) and the derived class (sub class) can modify the
functions (polymorphism)

Algorithm Design vs Programming

Some students at this point may feel
programming is difficult, and perhaps more
difficult that algorithm design

However as you become more familiar with

C

the programming, you will see that algorithm

esign Is typically more demanding and

C

Ifficult

Analogy:

= When you were a baby, learning English was difficult (you

had lots to say, if only you knew how to say it)

= When you are older and know the language well, the hard

part is finding the right thing to say !

Debugging

Learning how to “debug” an algorithm and the
associated program is a vital skKill:

= Syntax errors @

= Logic (run time) errors af
Carefully walk thur algorithm and code
Develop and check code in small “chunks”
Display intermediate results and check for
validity

Students must debug their own code as a key
part of learning !

Debugging (con’t)

80

Debugging Tips

#1. Print things a lot

On every single line of code, you should have a sense of what all of the variables values’ are. If
you’re not sure, print them out!

Then when you run your program, you can look at the console and see how the values might be
changing or getting set to null values in ways you’re not expecting.

Sometimes it’s helpful to print a fixed string right before you print a variable, so that your print
statements don’t all run together and you can tell what is being printed from where

print "about to check some_var"

print some_var

Sometimes you may not be sure if a block of code is being run at all. A simple print "got here" is
usually enough to see whether you have a mistake in your control flow like if-statements or for-
loops.

#2. Start with code that already works

When in doubt, start with someone else’s existing code that already works. If you’re a beginner,
you’re still more of a Hacker than an Engineer, and so it’s better to start with an existing structure
and tweak it to meet your needs.

If you’re working on your own project, try googling around for a script that does what you’re trying
to do. In my web scraping class, | provide working python code that completes the tasks in each
lesson.

Make sure you run the code you find before you make any changes to verify that it works properly
and does what it claims to do. Then make small changes to the existing code and test it often to
see if your changes have introduced bugs.

Debugging Tips (con’t)

#3. Run your code every time you make a small change

Do not start with a blank file, sit down and code for an hour and then run your code for the first time. You'll be
endlessly confused with all of the little errors you may have created that are now stacked on top of each other. It'll
take you forever to peel back all the layers and figure out what is going on.

Instead, you should be running any script changes or web page updates every few minutes — it’s really not
possible to test and run your code too often.

The more code that you change or write between times that you run your code, the more places you have to go
back and search if you hit an error.

Plus, every time you run your code, you’re getting feedback on your work. Is it getting closer to what you want, or
is it suddenly failing?

#4. Read the error message

It's really easy to throw your hands up and say “my code has an error” and feel lost when you see a stacktrace.
But in my experience, about 2/3rds of error messages you'll see are fairly accurate and descriptive.

The language runtime tried to execute your program, but ran into a problem. Maybe something was missing, or
there was a typo, or perhaps you skipped a step and now it’s not sure what you want it to do.

The error message does its best to tell you what went wrong. At the very least, it will tell you what line number it
got to in your program before crashing, which gives you a great clue for places to start hunting for bugs.

#5. Google the error message

If you can’t seem to figure out what your error message is trying to tell you, your best bet is to copy and paste the
last line of the stacktrace into Google. Chances are, you’ll get a few stackoverflow.com results, where people have
asked similar questions and gotten explanations and answers. This can sometimes be hit-or-miss, depending on
how specific or generic your error is. Make sure you try to read the code in the question and see if it's similar to
yours — make sure it's the same language! Then read through the comments and the first 2-3 answers to see if;,

any of them work for you. .
Copyright Dan Brandon, PhD, PMP

Debugging Tips (con’t)

#6. Guess and Check

If you're not 100% sure how to fix something, be open to trying 2 or 3 things
to see what happens. You should be running your code often (see #3), so
you'll get feedback quickly. Does this fix my error? No? Okay, let’'s go back
and try something else.

There'’s a solid possibility that the fix you try may introduce some new error,
and it can be hard to tell if you're getting closer or farther away. Try not to
go so far down a rabbit hole that you don’t know how to get back to where
you started.

Trying a few things on your own is important because if you go to ask
someone else for help (see #10), one of the first things they’ll ask you for is
to list 2-3 things you've tried already. This helps save everyone time by
avoiding suggestions you've already tried, and shows that you're committed
to solving your problem and not just looking for someone else to give you
free, working code.

Debugging Tips (con’t)

#7. Comment-out code

Every programming language has a concept of a comment, which is a way for
developers to leave notes in the code, without the language runtime trying to
execute the notes as programming instructions.

You can take advantage of this language feature by temporarily “commenting
out” code that you don’t want to lose track of, but that you just don’t want
running right now. This works by basically just putting the “comment character”
for your language at the start (and sometimes at the end) of the lines that you're
commenting out.

If your script is long, you can comment out parts of the code that are unrelated
to the specific changes you’re working on. This might make it run faster and
make it easier to search the remainder of the code for the mistake.

Just make sure you don’t comment out some code that sets variables that your
program is using later on — the commented-out code is skipped entirely, so
statements that run later on won'’t have access to any variables that are set or
updated in the commented out sections.

And of course, make sure you remove the comment characters so that it turns
back into instructions when you’re done testing the other sections.

84
Copyright Dan Brandon, PhD, PMP

Debugging Tips (con’t)

#8. If you're not sure where the problem is, do a binary search

The more code you have that’s running, the more places you have to check for an error.
Especially as your project grows past a few dozen lines, it can get more and more difficult to
find out where errors are happening. Your stack trace and error message should give you a
clue as to where things are going wrong, but sometimes they’re not too helpful.

In that case, it’s helpful to do a binary search to hone in on the section of code that's
misbehaving.

At a high level, a binary search involves splitting something in half and searching each of the
halves for what you’re looking for. Once you decide which half it’s in, you repeat the process
again on that half. This is one of the quickest ways to hone in on where something is, in an
otherwise large list of instructions.

For finding bugs in your script or web app, just run the first half of your code, comment out
the second half, and then print the half-way done results. If those look right, then the first half
of your code is running fine and the problem you’re encountering must be in the second half.
If there’s a problem with the half-way done results, then the error is occurring somewhere in
the first half.

Repeat this process over and over, and you’ll be able to quickly hone in on the 2 or 3 lines
that seem to be leading your program astray.

You may have noticed that this method combines a lot of the earlier steps of printing
variables out, commenting code out and reading the error messages looking for line
numbers.

Debugging Tips (con’t)

#9. Take a break and walk away from the keyboard

It's really easy to get caught up in the details of your current
Implementation. You get bogged down in little details and start to lose
sight of the forest through the trees.

In cases where | feel like I've been spinning my wheels for the last 20 or
30 minutes, | try to step away from the code and do some other activity
for a little while before coming back. I'll go get a drink of water, meander
around a bit or have a snack. It's a great way to reset your mind, pull back
and start to think of another approach.

| realize that it's also seemingly unsatisfying if you haven't tried it. “If |
walk away now, ['ll forget all of these details! I'll have to start all over
again. Plus | don't feel satisfied leaving code in a broken state. What if |
never fix it and I'm a failure. | can’t leave until it's working again.” | used to
think all of those things as well.

But it has become one of my favorites tips and has helped me past
dozens of bugs over the years. If you try it you might be surprised just

how helpful that can be. 86
Copyright Dan Brandon, PhD, PMP

Class Exercise

Design a flowchart for the following
process:
m Calculate an employee’s gross pay

They get paid by the hour

They get time-and-a-half for over 40
hours

m There Is more than one employee

Don’t look ahead !

More

employees ?

NO

Get
regular
hours

Pay = regHours
* payRate

Get
overtime
hours

Overtime ?

NO

Pay = Pay +
overHours *

payRate *1,5

Pseudocode

Input first employee
While (employee not null)
{
= Get employee data (pay-rate, reg-hrs, ovt-hrs)
= Pay = reg-hours * pay-rate
= |f (ovt-hrs > 0) {
Pay = pay + ovt-hrs * pay-rate * 1.5
=}
= Output pay
= [nput next employee

Design an Algorithm to Add n Numbers
(In an array) - Express In pseudocode

Z=A, +A+ ... Ay

Numbers are in an array
Write pseudocode

Don’t look ahead !

Input array |]

sum = O {some languages initialize variables to zero, some don’t}

1=1 {arrays start at zero in JavaScript}
while 1<=n

- {

® SUm = sum + array [i]

mi=i+1

=}

Output sum

Design an Algorithm to Multiply n
Numbers

Z=A,*A,* ... A,

Numbers are In an array

Don’t look ahead !

Input array (]

prod =1

1=1

while 1 <=n

= {

= prod = prod * array [i]
mi=1+1

=}

Output prod

Design An Algorithm That Can Find
N! (N factorial)

Don’t look ahead !

Forward & Backward Loops

Input n

prod =1

|1=2
while 1<=n

= {

= prod = prod * |
mi=i+1

=}

Output prod

Input n
prod = n

l1=n -1
while 1 >0

= {

= prod = prod * |
mi=1-1

=}

Output prod

Do not use any
Kind of loop

Use formulas

Don’t look ahead !

Example:

Add numbers from 1 to 100
ml+100=101

2 +99=101

3 +98 =101

= And so on fifty times

SUM = (N + 1) * (N/2)
But this only works for even numbers

So an algorithm would be:

= if N is even then SUM = (N + 1) * (N/2)

= if Nis odd then SUM = (N *(N-1)/2) + N
How do you check for an even number
In code?

iIf (int(N/2)*2 ==N) {or “floor” function}
Or use mod function iIf available which

calculates the remainder when one divides by
X

= if (mod(N,2) == 0)

There may be a modulus operator:
= if((N mod 2) ==0)

% In JavaScript:

m if((N % 2) ==0)

