
Internet Programming

Programming and Algorithms

Dan Brandon, Ph.D., PMP

1Copyright Dan Brandon, PhD, PMP

Copyright – Dan Brandon

https://www.khanacademy.org/computing/computer-programming/programming/intro-to-programming/v/programming-intro

Algorithm

◼Wikipedia:

◼ In mathematics,

computer science, and

other areas, an

algorithm is an effective

method expressed as a

finite list of well-defined

instructions for

calculating a result

4

The Google Way
[Infoworld, 2/23/04]

◼ The Google corporate philosophy is
expressed in five principles:

◼ "Work on things that matter

◼ Affect everyone in the world

◼ Solve problems with algorithms if possible

◼ Hire bright people and give them lots of
freedom

◼ Don't be afraid to try new things“

◼Where did the word

“algorithm come from ?”

Don’t look ahead !

◼Last name of Persian

mathematician

Mohammad ibn-

Musa Al-Khowarizmi,

which sounds more

like algorithm when

written in Latin

Algorithms
◼ Briefly: The systematic solution to a specific

problem, represented in a series of well defined

steps

◼ Computer application - the steps are performed

by a computing agent, or the interaction between

a computing agent and some other form of

intelligence (ie human)

Is this an algorithm?

◼ Chocolate “mousse” :

◼ 1. Melt chocolate and 2 tablespoons water in double
boiler. Set aside.

◼ 2. Beat egg yolks until thick and lemon-colored, about 5
minutes.

◼ 3. Gently fold in 8 ounces of semi-sweet chocolate.

◼ 4. Reheat slightly to melt chocolate, if necessary.

◼ 5. Stir in 1 tablespoon of rum and vanilla. Beat egg whites
until frothy.

◼ 6. Beat in 2 tablespoons sugar until stiff peaks form.

◼ 7. Gently fold whites into chocolate-yolk mixture.

◼ 8. Pour into individual serving dishes. Chill at least 4
hours.

◼ 9. Serve with whipped cream, if desired.

◼ Makes 6 to 8 servings

Don’t look ahead !

What's wrong with the algorithm to

make chocolate mousse?

◼It uses words and phrases

whose meanings are not clear

to some people (it’s ambiguous)
◼ double boiler, fold in, frothy, stiff peaks form

To correct the mousse algorithm:

◼We’d have to use

more specific and

well understood

terms to express

such things as

“frothy” and “fold”

to make it not so

ambiguous

Recipe with “Flow Chart”

Is this an algorithm?

◼1. Wet hair

◼2. Lather

◼3. Rinse

◼4. Repeat

Don’t look ahead !

What's wrong with the algorithm to

wash your hair?

◼ It has no end !

To correct the hair-washing algorithm:

◼We’d have to say something

like:

◼ “Repeat steps 2 and 3 twice and

then stop to make it a finite

process.”

IS THIS AN ALGORITHM?

◼1. Make a list of all the prime

numbers

◼2. Put the list in ascending order

◼3. Print each 10th element

◼4. STOP

Don’t look ahead !

What's wrong with this algorithm?

◼One of the steps is

impossible to do !

To correct this algorithm:

◼We’d have to say something

like:

◼ “Make a list of the prime

numbers less than X”

◼So that it is computable

A Good Algorithm:

◼ Provides a step-by-step process in the correct

order

◼ Is unambiguous

◼ Is “do-able”

◼ Has an end

◼ Provides some useful output or result

CS Algorithm Definition

◼An algorithm is a well-ordered

collection of unambiguous and

effectively computable

operations that when executed

produces a result and halts in a

finite amount of time

Writing An Algorithm

◼ In order to write an algorithm, following things

are needed:

◼ The problem that is to be solved by this algorithm

◼ The constraints of the problem that must be

considered

◼ The input to be taken to solve the problem

◼ The output to be expected when the problem the

is solved

◼ The solution to this problem, in the given

constraints

It follows that in order to write a

good algorithm, you must know..

◼The set of words that your

computing agent can

understand

◼The set of operations that your

computing agent is capable of

performing

The “Find The Maximum” Algorithm

◼Let’s say I handed you 16 pieces of

paper, each of which had a number

on it

◼Now write down the process you

would go through to find the largest

of the numbers

Did your algorithm have all of

these features ?

◼Provides a step-by-step process in the

correct order

◼ Is unambiguous

◼ Is “do-able”

◼Has an end

◼Provides some useful output or result

How Do You Tell A Computer How

To Perform A Process?

◼1. You give it step by step

instructions using a computer

language

◼2. The computer will perform those

steps in the order in which they are

presented to it

Tell A Computer How To Perform

A Process (con’t)

◼3.You can, however, tell the
computer to:

◼Start at a certain step, and
proceed sequentially step by
step

◼Repeat certain steps

◼Skip certain steps under certain
circumstances

In Other Words, The Computer Can

Perform Operations Three Ways:

◼Sequentially

◼Conditionally

◼Iteratively

The Branching/Conditional

Constructs
◼ IF

◼ IF/ELSE

◼Format of: IF

◼ IF (THIS IS TRUE)

▪ DO SOMETHING;

Conditional (con’t)

◼Format of: IF/ELSE

◼ IF (SOME CONDITION IS TRUE)

▪ DO SOMETHING;

◼ ELSE

▪ DO SOMETHINGELSE;

Here is an example of when you

would use if:

◼ IF (USER PRESSES THE ESCAPE KEY)

◼ EXIT THE PROGRAM

Here is an another example of when

you would use if/else:

◼ PROMPT USER FOR NUMBER OF HOURS

WORKED THIS WEEK

◼ IF (NUMBER OF HOURS <=40)

◼ GROSS = RATE * HOURS

◼ ELSE

◼ GROSS=(RATE*40)+(HOURS-40)*(RATE*1.5)

The Looping/Iterative

Construct:

◼ WHILE “loop”

◼ The format for: WHILE

◼ WHILE (“THIS STATEMENT” IS TRUE)

◼ D0 SOMETHING;

◼ (“SOMETHING” IS STATEMENT (s) THAT WILL

EVENTUALLY CAUSE “ THIS STATEMENT” TO

BE FALSE)

Loops (con’t)

◼Other looping structures

◼Do ... While

◼Repeat...Until

◼For ...

“Find The Maximum Value"

Algorithm

◼ 1. Say you have a stack of index cards with a
number on each one. You want to find the
largest number.

◼ 2. You look at the first number. It is the
largest so far so you set it aside as the "max".

◼ 3. You look at the next number. You
compare it to the "max" value. If its larger, it
becomes the max; otherwise discard it.

◼ 4. You repeat step 3 until you reach the end
of the "pile". The number set aside as the
max is the largest.

Next, tell a computer how to do it.

◼Computers don't deal with "index
cards", "setting things aside" and
"piles"

◼They deal with values stored in
memory cells

◼In addition, data must be stored in
the memory cell(s) using a specific
format or structure

I/O

◼ In order to have the computer find the

maximum value, we have to give it

some input and it will have to provide us

with some output

◼ In other words, we have to give the

computer several data items that it must

store in the appropriately defined

memory cells

We refer to these memory cells as

variables:

◼ In high school algebra, a variable
was a number with an unknown
value that was represented by a
letter (Ex: x=2y + 3)

◼To a computer, a variable is a
storage cell in memory that can
store a single data item

Basic (Intrinsic) Items

◼There are some basic or “intrinsic”data

items (variable types) that an algorithm

might need to manipulate (each must be

stored in an appropriately-defined

memory cell):

◼ Integers

◼Real numbers (floating point or real)

◼Characters (text)

Complex Items

◼There are also some not-so-basic data
items that an algorithm might need to
manipulate (and each of these must be
stored in an appropriately defined
memory cell or cells):
◼ Character strings (names, etc.)

◼ Arrays (a series of numbers)

◼ Objects (user defined data items)

◼ Data Structures (Groups of Items)

◼ Stacks (LIFO arrays)

◼ Queues (FIFO arrays)

◼ Trees

It is necessary to use the correct type of

memory cell when storing data because:

◼ Putting a value in a particular type of memory

cell (the memory cell has been defined to hold a

certain type) gives that value meaning or

context

◼ Without structure, the data has no defined

meaning Its just 010110110111000

◼ The computer has to know how to interpret

those 1’s and 0’s (bits)

◼ Perhaps as the ASCII or UNICODE code for a

character

◼ Perhaps as the binary representation for a number

Variable types (con’t)

◼Also, a value must be in the

appropriate type (format) so

that the program will only

perform appropriate processes

on that data (i.e. it won’t try to

multiply characters)

Now that we know something

about writing algorithms, and

data types, we can make a

second attempted to re-write

the “find max” algorithm

assuming that our computing

agent is a basic computer

◼ MAX = FIRST NUMBER

◼ WHILE (MORE NUMBERS TO LOOK AT)

◼ {

◼ GET NEXT NUMBER

◼ IF THIS NUMBER IS BIGGER THAN MAX THEN

MAX = THIS NUMBER

◼ }

◼ OUTPUT MAX

Implementing the Algorithm -Programming

◼ Writing the program

◼ Specific computer language

◼ Editor

◼ Checking the program (not for interpreted languages)

◼ Compiling

◼ Removing syntax errors

◼ Linking

◼ Running Program

◼ Debugging (removing runtime errors)

Languages

◼ Machine Language

◼ Ones & Zeros

◼ Assembly Language

◼ High Level Languages

◼ Third Generation Languages

◼ C and C++

◼ COBOL

◼ Fortran

◼ Java

◼ JavaScript (an interpreted language – no compiler)

◼ PHP

◼ Python

◼ R

Representing Algorithms

◼Pseuodocode

◼Flowcharts

◼Dataflow Diagrams

◼Event Diagrams & Use Cases

Pseudocode

◼Informal language to express

algorithm

◼Not executed on computers

◼Consists only of action statements,

leaving out declarations

◼Avoids syntax details (ie

semicolons, etc)

◼Pseudocode:

◼if a is greater than b

◼print “a is bigger”

◼JavaScript code:

◼if (a > b)

◼alert (“a is bigger”);

Flowcharts
◼ A graphical representation of an algorithm or

portion thereof

◼ Arrows - flowlines

◼ Symbols

◼ rectangle (action) - some processing

◼ diamond (decision) - a decision is made

◼ trapezoid (i/0) - input is obtained, or data

output

◼ oval - a starting or stopping point

Sample Flowchart

When writing algorithms, we can use the

following flow control structures :

◼ SEQUENTIAL

◼ Do this and then this

◼ CONDITIONAL

◼ Do this or don’t do this [if]

◼ Do this or do that [if/else]

◼ REPETITION (LOOP)

◼ Do something until this happens
(repeat/until)

◼ While this is true do something

if

◼A single selection structure

◼Selects or ignores an action

◼Pseudocode:

◼ if a is greater than b, then print “a more

than b”

◼ JavaScript code

◼ if (a > b)

◼ alert (“a more than b”);

if Flowchart

if/else

◼ Double Selection

◼ Pseudocode:

◼ If a greater than b then

◼ print “yes”

◼ else

◼ print “no”

◼ JavaScript code:

◼ if (a > b)

◼ alert (“yes”);

◼ else

◼ alert(“no”);

if/else Flowchart

JavaScript while loop

◼ while (some condition is true)
◼ statement or block of statements

◼ count = 1;

◼ while (count <= 20)

◼ {
◼ alert (count);

◼ count = count + 1; or count++;

◼ }

What does this code do ?

while Flowchart

While Cautions

◼Remember while tests condition

before repetitions!

◼Remember to initialize counter

◼Remember to include a

termination condition, so you do

not get an infinite loop

do/while loop

◼do

◼statement(s);

◼while (condition);

◼do/while does statement(s) first
time before testing condition

Do/While Flowchart

for

◼for (initial; test condition; increment)

◼statement or block of statements

◼ for (count =1; count <=20; count = count + 1)

◼alert (count);

◼ can use: count++ instead of count = count+1

For Flowchart

Copyright: Dan Brandon, PhD

Structured Programming
[goto less programming]

◼Single entry for each control

structure

◼Single exit for each control

structure

◼Combine control structures by

◼Stacking
◼ Exit of one structure is entry for another

◼Nesting

Copyright: Dan Brandon, PhD

Single Entry - Single Exit

Copyright: Dan Brandon, PhD

Stacking Nesting

Find Maximum Flowchart

Find Maximum Algorithm

[“sentenel” = 0]

◼ Get first number from user (enter zero to end)

◼ MAX = first number

◼ While (number not zero)

◼ {

◼ if number greater than MAX then MAX = number

◼ get next number from user

◼ }

◼ Display MAX

Arrays

◼Consecutive cells in memory, of
a particular type

◼The array is given a name -
myArray

◼Cells are numbered
consecutively (starting with zero
in JavaScript)

Arrays (con’t)

◼Reference to individual cells is by
giving array name and relative
position (index or subscript) in
array:

◼MyArray [12]

◼JavaScript starts numbering from
zero, so this is the thirteenth item
in the array

MyArray

11

14

92

3

29

74

MyArray[2] is 92

Cell 0

Cell 5

“for” loops – normally used with Arrays
[when you know how many times you want to do something]

◼for (i = 0; i < n; i=i+1)

◼{

◼ //do something n times

◼}

Alternatively: for (i = 0; i < n; i++)

Functions

◼ Programming languages typically have

functions some of which may be predefined,

and others can be created by the programmer

◼ Functions can have input arguments and return

values

◼ For example, one might create a function to

calculate pay:

◼ Pay(hourly-rate, hours-worked)

◼ Which would presumably multiply the two arguments

together and return the result

Object Orientation

◼ In OO languages, objects are built and/or created (either directly or

thru classes)

◼ These objects have associated:

◼ Properties

◼ Functions

◼ For example if we have a “rectangle object”:

◼ Properties: length and width

◼ Functions: area and perimeter

◼ Access to properties and functions is via an object (encapsulation):

◼ Object.property or Object.function

◼ A type of object(class) can de derived from another class

(inheritance) and the derived class (sub class) can modify the

functions (polymorphism)

Algorithm Design vs Programming

◼ Some students at this point may feel
programming is difficult, and perhaps more
difficult that algorithm design

◼ However as you become more familiar with
the programming, you will see that algorithm
design is typically more demanding and
difficult

◼ Analogy:
◼ When you were a baby, learning English was difficult (you

had lots to say, if only you knew how to say it)

◼ When you are older and know the language well, the hard
part is finding the right thing to say !

Debugging

◼ Learning how to “debug” an algorithm and the

associated program is a vital skill:

◼ Syntax errors

◼ Logic (run time) errors

◼ Carefully walk thur algorithm and code

◼ Develop and check code in small “chunks”

◼ Display intermediate results and check for

validity

◼ Students must debug their own code as a key

part of learning !

Debugging (con’t)

Copyright Dan Brandon, PhD, PMP

80

Debugging Tips

◼ #1. Print things a lot

◼ On every single line of code, you should have a sense of what all of the variables values’ are. If

you’re not sure, print them out!

◼ Then when you run your program, you can look at the console and see how the values might be

changing or getting set to null values in ways you’re not expecting.

◼ Sometimes it’s helpful to print a fixed string right before you print a variable, so that your print

statements don’t all run together and you can tell what is being printed from where

◼ print "about to check some_var"

◼ print some_var

◼ Sometimes you may not be sure if a block of code is being run at all. A simple print "got here" is

usually enough to see whether you have a mistake in your control flow like if-statements or for-

loops.

◼ #2. Start with code that already works

◼ When in doubt, start with someone else’s existing code that already works. If you’re a beginner,

you’re still more of a Hacker than an Engineer, and so it’s better to start with an existing structure

and tweak it to meet your needs.

◼ If you’re working on your own project, try googling around for a script that does what you’re trying

to do. In my web scraping class, I provide working python code that completes the tasks in each

lesson.

◼ Make sure you run the code you find before you make any changes to verify that it works properly

and does what it claims to do. Then make small changes to the existing code and test it often to

see if your changes have introduced bugs.

Debugging Tips (con’t)

◼ #3. Run your code every time you make a small change

◼ Do not start with a blank file, sit down and code for an hour and then run your code for the first time. You’ll be

endlessly confused with all of the little errors you may have created that are now stacked on top of each other. It’ll

take you forever to peel back all the layers and figure out what is going on.

◼ Instead, you should be running any script changes or web page updates every few minutes – it’s really not

possible to test and run your code too often.

◼ The more code that you change or write between times that you run your code, the more places you have to go

back and search if you hit an error.

◼ Plus, every time you run your code, you’re getting feedback on your work. Is it getting closer to what you want, or

is it suddenly failing?

◼ #4. Read the error message

◼ It’s really easy to throw your hands up and say “my code has an error” and feel lost when you see a stacktrace.

But in my experience, about 2/3rds of error messages you’ll see are fairly accurate and descriptive.

◼ The language runtime tried to execute your program, but ran into a problem. Maybe something was missing, or

there was a typo, or perhaps you skipped a step and now it’s not sure what you want it to do.

◼ The error message does its best to tell you what went wrong. At the very least, it will tell you what line number it

got to in your program before crashing, which gives you a great clue for places to start hunting for bugs.

◼ #5. Google the error message

◼ If you can’t seem to figure out what your error message is trying to tell you, your best bet is to copy and paste the

last line of the stacktrace into Google. Chances are, you’ll get a few stackoverflow.com results, where people have

asked similar questions and gotten explanations and answers. This can sometimes be hit-or-miss, depending on

how specific or generic your error is. Make sure you try to read the code in the question and see if it’s similar to

yours – make sure it’s the same language! Then read through the comments and the first 2-3 answers to see if

any of them work for you.
Copyright Dan Brandon, PhD, PMP

82

Debugging Tips (con’t)

◼ #6. Guess and Check

◼ If you’re not 100% sure how to fix something, be open to trying 2 or 3 things

to see what happens. You should be running your code often (see #3), so

you’ll get feedback quickly. Does this fix my error? No? Okay, let’s go back

and try something else.

◼ There’s a solid possibility that the fix you try may introduce some new error,

and it can be hard to tell if you’re getting closer or farther away. Try not to

go so far down a rabbit hole that you don’t know how to get back to where

you started.

◼ Trying a few things on your own is important because if you go to ask

someone else for help (see #10), one of the first things they’ll ask you for is

to list 2-3 things you’ve tried already. This helps save everyone time by

avoiding suggestions you’ve already tried, and shows that you’re committed

to solving your problem and not just looking for someone else to give you

free, working code.

Debugging Tips (con’t)

◼ #7. Comment-out code

◼ Every programming language has a concept of a comment, which is a way for

developers to leave notes in the code, without the language runtime trying to

execute the notes as programming instructions.

◼ You can take advantage of this language feature by temporarily “commenting

out” code that you don’t want to lose track of, but that you just don’t want

running right now. This works by basically just putting the “comment character”

for your language at the start (and sometimes at the end) of the lines that you’re

commenting out.

◼ If your script is long, you can comment out parts of the code that are unrelated

to the specific changes you’re working on. This might make it run faster and

make it easier to search the remainder of the code for the mistake.

◼ Just make sure you don’t comment out some code that sets variables that your

program is using later on – the commented-out code is skipped entirely, so

statements that run later on won’t have access to any variables that are set or

updated in the commented out sections.

◼ And of course, make sure you remove the comment characters so that it turns

back into instructions when you’re done testing the other sections.

Copyright Dan Brandon, PhD, PMP

84

Debugging Tips (con’t)

◼ #8. If you’re not sure where the problem is, do a binary search

◼ The more code you have that’s running, the more places you have to check for an error.

Especially as your project grows past a few dozen lines, it can get more and more difficult to

find out where errors are happening. Your stack trace and error message should give you a

clue as to where things are going wrong, but sometimes they’re not too helpful.

◼ In that case, it’s helpful to do a binary search to hone in on the section of code that’s

misbehaving.

◼ At a high level, a binary search involves splitting something in half and searching each of the

halves for what you’re looking for. Once you decide which half it’s in, you repeat the process

again on that half. This is one of the quickest ways to hone in on where something is, in an

otherwise large list of instructions.

◼ For finding bugs in your script or web app, just run the first half of your code, comment out

the second half, and then print the half-way done results. If those look right, then the first half

of your code is running fine and the problem you’re encountering must be in the second half.

If there’s a problem with the half-way done results, then the error is occurring somewhere in

the first half.

◼ Repeat this process over and over, and you’ll be able to quickly hone in on the 2 or 3 lines

that seem to be leading your program astray.

◼ You may have noticed that this method combines a lot of the earlier steps of printing

variables out, commenting code out and reading the error messages looking for line

numbers.

Debugging Tips (con’t)

◼ #9. Take a break and walk away from the keyboard

◼ It’s really easy to get caught up in the details of your current

implementation. You get bogged down in little details and start to lose

sight of the forest through the trees.

◼ In cases where I feel like I’ve been spinning my wheels for the last 20 or

30 minutes, I try to step away from the code and do some other activity

for a little while before coming back. I’ll go get a drink of water, meander

around a bit or have a snack. It’s a great way to reset your mind, pull back

and start to think of another approach.

◼ I realize that it’s also seemingly unsatisfying if you haven’t tried it. “If I

walk away now, I’ll forget all of these details! I’ll have to start all over

again. Plus I don’t feel satisfied leaving code in a broken state. What if I

never fix it and I’m a failure. I can’t leave until it’s working again.” I used to

think all of those things as well.

◼ But it has become one of my favorites tips and has helped me past

dozens of bugs over the years. If you try it you might be surprised just

how helpful that can be.
Copyright Dan Brandon, PhD, PMP

86

Class Exercise

◼Design a flowchart for the following

process:

◼Calculate an employee’s gross pay

◼ They get paid by the hour

◼ They get time-and-a-half for over 40

hours

◼There is more than one employee

Don’t look ahead !

Copyright Dan Brandon, PhD, PMP

89

Pseudocode

◼ Input first employee

◼ While (employee not null)

◼ {

◼ Get employee data (pay-rate, reg-hrs, ovt-hrs)

◼ Pay = reg-hours * pay-rate

◼ If (ovt-hrs > 0) {

◼ Pay = pay + ovt-hrs * pay-rate * 1.5

◼ }

◼ Output pay

◼ Input next employee

◼ }

Design an Algorithm to Add n Numbers

(in an array) - Express in pseudocode

◼Z = A1 + A2 + ... AN

◼Numbers are in an array

◼Write pseudocode

Don’t look ahead !

◼ Input array []

◼ sum = 0 {some languages initialize variables to zero, some don’t}

◼ i = 1 {arrays start at zero in JavaScript}

◼ while i <= n

◼ {

◼ sum = sum + array [i]

◼ i = i + 1

◼ }

◼ Output sum

Design an Algorithm to Multiply n

Numbers

◼Z = A1 * A2 * ... AN

◼Numbers are in an array

Don’t look ahead !

◼ Input array []

◼ prod = 1

◼ i = 1

◼ while i <= n

◼ {

◼ prod = prod * array [i]

◼ i = i + 1

◼ }

◼ Output prod

Design An Algorithm That Can Find

N! (N factorial)

◼1! = 1

◼2! = 2 * 1

◼3! = 3 * 2 * 1

◼...

Don’t look ahead !

Forward & Backward Loops

◼ Input n

◼ prod = 1

◼ i = 2

◼ while i <= n

◼ {

◼ prod = prod * i

◼ i = i + 1

◼ }

◼ Output prod

◼ Input n

◼ prod = n

◼ i = n - 1

◼ while i > 0

◼ {

◼ prod = prod * i

◼ i = i – 1

◼ }

◼ Output prod

Design An Algorithm That Sums The

Numbers From 1 To N

◼Do not use any

kind of loop

◼Use formulas

Don’t look ahead !

Example:

◼Add numbers from 1 to 100

◼1 + 100 = 101

◼2 + 99 = 101

◼3 + 98 = 101

◼And so on fifty times

◼SUM = (N + 1) * (N/2)

◼But this only works for even numbers

◼So an algorithm would be:

◼ if N is even then SUM = (N + 1) * (N/2)

◼ if N is odd then SUM = (N * (N-1)/2) + N

◼How do you check for an even number

in code?

◼ if (int(N/2)*2 == N) {or “floor” function}

◼ Or use mod function if available which

calculates the remainder when one divides by

X

◼ if (mod(N,2) == 0)

◼ There may be a modulus operator:

◼ if((N mod 2) ==0)

◼ % in JavaScript:

◼ if((N % 2) ==0)

