
Internet Programming

JavaScript Introduction

Dan Brandon, Ph.D., PMP

1Copyright Dan Brandon, PhD, PMP

Server Side Programming

◼ Server-side programming: Program code

runs from the server hosting the website

◼ Advantage

◼ Connects a server to an online database

containing information not directly accessible

to end users

◼ Disadvantages

◼ Use server resources and requires Internet

access

◼ Long delays in cases of system over-load

Copyright Dan Brandon, PhD, PMP

2

Server Side Programming (con’t)

Copyright Dan Brandon, PhD, PMP

3

Client Side Programming

◼ Client-side programming: Programs run on

the user’s computer using downloaded scripts

with HTML and CSS files

◼ Distributes load to avoid overloading of

program-related requests

◼ Client-side programs can never replace

server-side programming

Copyright Dan Brandon, PhD, PMP

4

Client Side Programming (con’t)

Copyright Dan Brandon, PhD, PMP

5

JavaScript vs Java

◼ JavaScript

◼ Limited capabilities

◼ Originally client side (only works within
Browsers), now also a server version

◼ Interpreted → no compiler

◼ Java
◼ Full object oriented language

◼ Applications, Applets (inside browsers), Servlets

◼ Compiled via Java Virtual Machines

◼ Applets downloaded separately (not part of HTML
document)

HTML/CSS/JavaScript

Copyright Dan Brandon, PhD, PMP

7

JavaScript Uses

◼ Generating or modifying HTML and/or CSS

dynamically (dynamic HTML)

◼ Validating fields in an HTML form

◼ Reporting usage statistics

◼ Obtaining local user input

◼ Allowing the user to make choices to invoke

various actions

◼ Showing properly windowed messages and

warnings

◼ Local form processing and other client

processing

JavaScript (JS) Tags

◼ JS start with:
◼ <script language=“JavaScript”>

◼ And end with:
◼ </script>

◼ In between beginning and ending tag is the
script code, which is case sensitive

◼ This is an embedded script, as opposed to an
external scrip discussed later
◼ The statements of the script code are very much like

C/C++/Java, and a semicolon is typically used to
terminate each statement (and declaration),
although the semicolon is not required

JavaScript (JS) Tags (con’t)

◼ Embedded JS can be place anywhere in an
HTML document, but normally in HEAD section

◼ C/Java “like” syntax

◼ Interpreter type execution (no compiler)
◼ There are now compiled JavaScript languages

available

◼ Even though Microsoft calls their version of
ECMAScript “Jscript”, you still use “JavaScript”
for the language parameter

◼ Most browsers have “JavaScript” as the default
scripting language, but best to specify it;
IE/Edge also supports VBScript

JavaScript (JS) Tags (con’t)

◼ When a browser encounters a script, it

immediately stops loading the page and begins

loading and then processing the script

commands

◼ The async and defer attributes can be added to

script element to modify its sequence of

processing
◼ The async attribute tells a browser to parse the HTML and

JavaScript code together

◼ The defer attribute defers script processing until after the page

has been completely parsed and loaded

◼ The async and defer attributes are ignored for embedded scripts
Copyright Dan Brandon, PhD, PMP

11

Browsers not Supporting JS

◼ To avoid the problems with very old browsers

that do not support JS, you can put the JS code

within comments:

◼ <SCRIPT LANGUAGE=“JavaScript”>

◼ <!--

◼ ...script...

◼ // -->

◼ </SCRIPT>

◼ There are some incompatibilities with differing

browsers and versions thereof

Browser Market

Web Device Usage

Page Load Times by Device

Page Load by Browser

Testing in Multiple Browsers

Hello World in JavaScript [HelloWorld1.html]

[writeln is a function of the document object discussed later;

and although “document” is optional in some browsers, it is required in some]

◼ <HTML>

◼ <HEAD><TITLE>Hello World in JavaScript</TITLE>

◼ </HEAD>

◼ <SCRIPT LANGUAGE="JavaScript">

◼ <!--

◼ document.writeln("<H1>Hello World !</H1>");

◼ // -->

◼ </SCRIPT>

◼ <BODY></BODY></HTML>

Will write “Hello World” in web page, try it out !

Note that it writes HTML code in the “document” !

Older Browser’s “view source”

shows dynamically written HTML

Newer Browser “view source”

shows original HTML/Javascript

Using Alert Function [HelloWorld2.html]

[alert is a function of the window object]

◼ <HTML>

◼ <HEAD><TITLE>Hello World in JavaScript</TITLE>

◼ </HEAD>

◼ <SCRIPT LANGUAGE="JavaScript">

◼ <!--

◼ window.alert("Hello World !");

◼ // -->

◼ </SCRIPT>

◼ <BODY></BODY></HTML>

Plain text is written in the alert window ! Can

also use console.log(), but requires “developer

tools” to be open in most browsers.

Alert (con’t)

Errors
◼ JavaScript is case sensitive

◼ Extra white space between commands is ignored

◼ Line breaks placed within the name of a

JavaScript command or a quoted text string

cause an error

◼ Types of errors:
◼ Load-time errors – occur when a script is first loaded by a

browser

◼ Run-time errors – occur during execution of a script without

syntax errors

◼ Logical errors – are free from syntax and executable mistakes

but result in an incorrect output
Copyright Dan Brandon, PhD, PMP

23

Errors (con’t)

◼ Errors in your JS may be shown in a dialog box
when the JS is loaded

◼ May need to enable script debugger (see next
slide)

◼ In your Hello World example, misspell alert,
and then open the html file to see what
happens

◼ Next, leave off the final SCRIPT tag and see
what happens

Try these out !

Error’s (con’t)

Error’s (con’t)

◼ Not all errors will be reported, and those that
are reported may be reported on the wrong line
or more errors will be reported that occurred

◼ Your browser may have a JavaScript debugger
enabled – try the above scenarios in other
browsers !

◼ In some browsers, there is a shortcut to open a

debugging tool (F12)

◼ Also in some browsers, the tools can also be

opened by selecting Developer Tools from the

browser menu
Copyright Dan Brandon, PhD, PMP

26

Setting Error Reporting in IE

Setting Error Reporting in Nav

JavaScript Console in FireFox

JS Debugging in Safari

JS Debugging in Chrome

JS Debugging in Opera

Add On Debuggers

Mozilla JavaScript Debugger

Stand Alone JS Debugger

Debugging !

◼ The instructor should not help you debug

your programs !

◼ Students should also not help other students

with specific bug identification and correction

◼ A major part of the learning experience is for

you to find and correct your own errors !

◼ Go thru online lesson about algorithms and

programming

Debugging Techniques

◼ Make sure JS error notification is turned on

◼ Build your programs in “pieces” (do not write

the whole program at once)

◼ Isolate problem areas in your code by using

“alerts” and other facilities to see intermediate

progress thru the operation of your programs

Strict Mode

◼ Strict mode enables all lapses in syntax to result in

load-time or run-time errors

◼ To run a script in strict mode, add the following

statement to the first line of the file:

“use strict”;

Copyright Dan Brandon, PhD, PMP

38

Breakpoints

◼ A useful technique to locate the source of an

error is to set up breakpoints, and this is

possible in some browsers

◼ Breakpoints are locations where a browser

pauses a program to determine whether an error

has occurred at that point during execution

Copyright Dan Brandon, PhD, PMP

39

Breakpoints (con’t)

◼ For example, in Chrome, first open the

developer tools (Ctrl + Shift + I), or go to the

wrench menu, Tools, Developer Tools:
◼ 1.Select the Scripts tab

◼ 2.Click the little folder icon on the far left

◼ 3.Navigate to the source file where you want to set the break

point

◼ 4.Find the line in question, then click the line number to set the

breakpoint (a little highlighted triangle will appear)

◼ 5.When the breakpoint is fired, you get access to the watches

section where you can run arbitrary expressions, see all the

variables

Copyright Dan Brandon, PhD, PMP

40

Breakpoints (con’t)

Copyright Dan Brandon, PhD, PMP

41

Debugger Statement

◼ A ‘debugger’ statement is available in some browsers

◼ This is handy in two cases:

◼ A) When the JavaScript file is hard to navigate into (this is true

for complex web apps with lots of scripts, iframes, etc).

◼ // cause the debugger to fire every time

◼ debugger;

◼ B) The breakpoint should only fire for a certain condition.

◼ // example 2, only if the force is with us, do we get a breakpoint

◼ if(theForceIsWithUs) {

◼ debugger;

◼ }

Copyright Dan Brandon, PhD, PMP

42

Debugger Statement (con’t)

◼ The debugger keyword stops the execution of

JavaScript, and calls (if available) the debugging function

◼ This has the same function as setting a breakpoint in the

debugger

◼ If no debugging is available, the debugger statement has

no effect

◼ With the debugger turned on, this code will stop

executing before it executes the third line

◼ var x = 15 * 5;

◼ debugger;

◼ document.getElementById("demo").innerHTML = x;

Copyright Dan Brandon, PhD, PMP

43

Use of Quotes

◼Replace the double quotes around the

HTML tag properties with single quotes

when you are creating dynamic HTML

with JavaScript (or a server process:

CGI, ASP, PHP, etc.) !!!

◼See next slide →

With FONT Tag and write function
[HelloWorld3.html]

◼ <HTML>

◼ <HEAD><TITLE>Hello World in JavaScript</TITLE>

◼ </HEAD>

◼ <SCRIPT LANGUAGE="JavaScript">

◼ <!--

◼ document.write("<H1>Hello");

◼ document.writeln(" World !</H1>");

◼ // -->

◼ </SCRIPT>

◼ <BODY></BODY></HTML>

Automatic Conversion Programs

Converted HTML

JavaScript String Escape / Unescape

◼ One can also use the backslash (\) escape character to

prevent JavaScript from interpreting a quote as the end of

the string; the syntax of \' will always be a single quote,

and the syntax of \" will always be a double quote

◼ The following characters are reserved in JavaScript and

must be properly escaped to be used in strings:
◼ Horizontal Tab is replaced with \t

◼ Vertical Tab is replaced with \v

◼ Null char is replaced with \0

◼ Backspace is replaced with \b

◼ Form feed is replaced with \f

◼ Newline is replaced with \n

◼ Carriage return is replaced with \r

◼ Single quote is replaced with \'

◼ Double quote is replaced with \"

◼ Backslash is replaced with \\

JavaScript Language

◼A simplified version of Java

◼Code is interpreted not compiled !

◼Some JavaScript compilers now
available

◼Contains:

◼User defined and system variables

◼JS statements, objects, and methods
(functions executed thru objects)

◼Expressions and operators

Objects

◼ JS objects have properties and methods

◼ JS has built in objects such as:
◼ dates

◼ strings

◼ GUI controls (buttons, etc.)

◼ browser itself

◼ Reference to an object’s properties and
methods uses “dot” notation (like C structures
or C++/Java classes):

◼ object.property or object.method

Objects (con’t)

◼ Types of JavaScript objects

◼ Built-in objects – intrinsic to JavaScript

language

◼ Browser objects – part of browser

◼ Document objects – part of web document

◼ Customized objects – created by a programmer

to use in an application

◼ Browser object model (BOM) [window.xxx]

and document object model (DOM)

[document.xxx] organize browser and document

objects in hierarchical structures, respectively
Copyright Dan Brandon, PhD, PMP

51

Browser & Document Objects

Copyright Dan Brandon, PhD, PMP

52

Object Reference

◼ Objects within the object hierarchy are referenced by

their object names such as

◼ window, document, or navigator

◼ Objects can be referenced using the notation

object1.object2.object3 ...

where object1 is at the top of the hierarchy, object2 is a child of

object1, and so on

◼ To reference a specific member of an object collection,

use

collection[idref] or collection.idref

where collection is a reference to the object collection and

idref is either an index number or the value of id attribute

Copyright Dan Brandon, PhD, PMP

53

Object Collections

Copyright Dan Brandon, PhD, PMP

54

Variables

◼Variable are either system variables or

user defined variables

◼Variables include:

◼Strings - groups of characters

◼Numeric values - integers and real

numbers

◼Booleans - true or false

User Defined Variables

◼ JS is a very loosely defined language

with no provisions for type checking

◼ To define a user variable, just give it a name

using upper or lower case letters and

numbers and the underscore symbol

(variables cannot start with a number):

◼ tempVar = 3;

◼s_name = “John Doe”;

User Defined Variables (con’t)

◼ You can also use ‘var’ to declare a variable
and optionally give it a value at that time:

◼var days;

◼ Although not required, it is best to declare all
variables (with var) before the variable is
used

◼ Standard naming conventions for user
variables is “camel” notation like: interestRate

Strings
◼ Strings are enclosed in double or single

quotes:

◼ myString = “Hello World!”;

◼ Formatting codes (escape sequences) can

also be included:

◼ \n (newline)

◼ \a (bell)

◼ \t (tab)

◼ The plus sign can be used to concatenate

strings

Prompt Window [PromptTest.html]

[“prompt” function (of ‘window’ object) returns a string and the

two arguments are the message and default input (optional)]

◼ <HTML>

◼ <HEAD><TITLE>Prompting</TITLE>

◼ </HEAD>

◼ <SCRIPT LANGUAGE="JavaScript">

◼ <!--

◼ name = window.prompt("Who are you ?", "");

◼ document.writeln("<H1>This page is for you “

◼ + name + "</H1>");

◼ // -->

◼ </SCRIPT>

◼ <BODY></BODY></HTML>

Type Conversion

◼ JS automatically performs many type conversions

◼ For example:
◼ x = “123”;

◼ y = 45;

◼ z = x + y;

◼ For z = x + y, z would contain text as “12345”
◼ + used for string concatenation here

◼ For z = y + x, z would contain the number 168

◼ Auto type conversion based on left operand

◼ To explicitly convert a string:
◼ var n = parseInt(“123”); // to integer

◼ var n = parseFloat(“123”); // to float

parseInt

◼ The parseInt() function parses a string and returns an integer

◼ The second optional radix parameter is used to specify which numeral

system to be used, for example, a radix of 16 (hexadecimal) indicates

that the number in the string should be parsed from a hexadecimal

number to a decimal number

◼ If the radix parameter is omitted, JavaScript assumes the following:

◼ If the string begins with "0x", the radix is 16 (hexadecimal)

◼ If the string begins with "0", the radix is 8 (octal); this feature is deprecated

◼ If the string begins with any other value, the radix is 10 (decimal)

◼ Note: Only the first number in the string is returned!

◼ Note: Leading and trailing spaces are allowed

◼ Note: If the first character cannot be converted to a number, parseInt() returns NaN

◼ Note: Older browsers will result parseInt("010") as 8, because older versions of

ECMAScript (older than ECMAScript 5) use the octal radix (8) as default when the

string begins with "0“; as of ECMAScript 5, the default is the decimal radix (10)

Number()

Expressions

◼ Like in C/C++/Java, expressions evaluate to a

single value:

◼ Arithmetic expressions

◼ String expressions

◼ Logical expressions (evaluate to true or false)

◼ Like in C/C++/Java, it is best to use parenthesis

to force expressions to be evaluated in the order

you desire instead of the built in precedence

order:

◼ var x = 3 * (a + b); //without parentheses x=3a+b

JS Arithmetic Operators
[same as C/C++/Java]

◼ = Assignment

◼ += Add & assign

◼ used for strings also

◼ + Add

◼ used for strings also

◼ -= Subtract and assign

◼ - Subtract

◼ *= Multiply and assign

◼ * Multiply

◼ /= Divide and assign

◼ / Divide

◼ ++ Increment

◼ -- Decrement

JS Conditional Operators

[similar to C/C++/Java]

JS Logical Operators

[same as C/C++/Java]

Expressions (con’t)

◼Conditional expressions:

◼ timeType = (hour >= 12) ? “PM” : “AM”

◼Assignment expressions:

◼ x = 45;

◼ x = x + 10;

◼ x += 10; //same as x = x + 10

Comments

◼C Style (multiple line)

◼/* ... */

◼C++ or Java Style (single line)

◼//....

Class Exercise
[multiply.html]

◼ Write a web page which asks the user for two
numbers (use a separate prompt for each
number), and then prints out the product of
the two numbers

◼ For ease of debugging, do not try to write the
program all at once!
◼ Just do the first prompt and write the user’s

response out in HTML

◼ Then later add the second prompt and
arithmetic

◼Try to work class

exercises without looking

ahead !

Exercise (con’t)

◼ <HTML>

◼ <HEAD><TITLE>Prompting</TITLE>

◼ </HEAD>

◼ <SCRIPT LANGUAGE="JavaScript">

◼ <!--

◼ var n1, n2, s1, s2;

◼ s1 = window.prompt("Enter first number:", "0");

◼ s2 = window.prompt("Enter second number:", "0");

◼ n1 = parseInt(s1);

◼ n2 = parseInt(s2);

◼ var n3 = n1 * n2;

◼ document.writeln("<H1>The product of these

◼ numbers is: " + n3 + "</H1>");

◼ // -->

◼ </SCRIPT>

◼ <BODY></BODY></HTML>

if Statements (else part is optional)
[there is also the C/C++/Java type “switch/case”]

◼ if (logical_condition)

◼ {

◼ statements

◼ }

◼ else

◼ {

◼ statements

◼ }

Example

◼ <HTML>

◼ <HEAD><TITLE>Greetings</TITLE>

◼ </HEAD>

◼ <SCRIPT LANGUAGE="JavaScript">

◼ <!--

◼ var now = new Date();

◼ var hours = now.getHours();

◼ if (hours >= 12)

◼ {

◼ document.writeln("<H1>Good Afternoon</H1>")

◼ }

◼ else

◼ {

◼ document.writeln("<H1>Good Morning</H1>")

◼ }

◼ // -->

◼ </SCRIPT>

◼ <BODY></BODY></HTML> greetings.html

If/Else without braces
[only one statement in block]

◼ <HTML>

◼ <HEAD><TITLE>Greetings</TITLE>

◼ </HEAD>

◼ <SCRIPT LANGUAGE="JavaScript">

◼ <!--

◼ var now = new Date();

◼ var hours = now.getHours();

◼ if (hours >= 12)

◼ document.writeln("<H1>Good Afternoon</H1>");

◼ else

◼ document.writeln("<H1>Good Morning</H1>");

◼ // -->

◼ </SCRIPT>

◼ <BODY></BODY></HTML>

NaN

◼ If the user does not input a numeric value to
the prompts in the previous exercise, the
parseInt function will return a string variable
which is “NaN” (not a number)

◼ You can test the user input before doing the
arithmetic by checking:

◼ var n1 = parseInt(s1);

◼ if(isNaN(n1)) …

◼ Redo the previous class exercise and give
the user a clear error message if a non-
numeric value is entered

isFinite()

◼ Infinity value

◼ Generated for an operation whose result is less than the smallest

numeric value or greater than the largest numeric value supported

by JavaScript

◼ Can check for this outcome using:

isFinite(value)

where value is the value you want to test for being finite

◼ isFinite() function returns a Boolean value

◼ True if the value is a finite number falling within JavaScript’s

acceptable range

◼ False if the numeric value falls outside that range or if the value

is not a number at al

Copyright Dan Brandon, PhD, PMP

76

Accuracy

◼ JavaScript stores a numeric value to 16 decimal

places of accuracy

◼ The number of digits displayed by browsers is
controlled using toFixed() method

value.toFixed(n)

where value is the value or variable and n is the

number of decimal places displayed in the output

◼ toFixed() limits the number of decimals displayed

by a value and converts the value into a text string

◼ toFixed() rounds the last digit in an expression

rather than truncating it

Copyright Dan Brandon, PhD, PMP

77

Numerical Functions & Methods

Copyright Dan Brandon, PhD, PMP

78

Loops (just like C/C++/Java)

◼ while (logical condition)

◼ {

◼ statements

◼ }

◼ for (initial expression; logical condition;

update expression)

◼ {

◼ statements

◼ }

Simple for Loop

Copyright Dan Brandon, PhD, PMP

80

Simple while Loop

Copyright Dan Brandon, PhD, PMP

81

Loops (con’t)

◼ There is also the do-while type of loop

◼ “break” can be used to exit loops, and there is
a labeled break for nested breaks

◼ “continue” can be used to skip a pass of a
loop

◼ To loop over an object’s properties use:

◼ for (index in object) {};

◼ Example to show window properties:

◼ for (i in window) {

◼ alert(i);

◼ }

Class Exercise Extension

◼Redo your class exercise so that

the user will continue to get error

messages (over and over again)

until a valid number is entered (for

each of the two prompts)

◼You may wish to write the

pseudocode first

Pseudocode

◼ do

◼ {

◼ s1 = prompt(…)

◼ n1 = parseInt(s1)

◼ if (isNaN(n1)) alert (…)

}

• while (isNaN(n1))

◼Try to work class

exercises without looking

ahead !

User input With Error Checking
◼ <HTML>

◼ <HEAD><TITLE> User Input </TITLE></HEAD>

◼ <SCRIPT LANGUAGE = "JavaScript">

◼ var n1, n2, s1, s2;

◼ do

◼ {

◼ s1 = window.prompt("Enter first number:", "0");

◼ n1 = parseInt(s1);

◼ if (isNaN(n1))

◼ {

◼ alert("Input is not numeric");

◼ }

◼ }

◼ while(isNaN(n1));

◼ do

◼ {

◼ s2 = window.prompt("Enter second number:", "0");

◼ n2 = parseInt(s2);

◼ if (isNaN(n2))

◼ {

◼ alert("Input is not numeric");

◼ }

◼ }

◼ while(isNaN(n2));

◼ var n3 = n1 * n2;

◼ document.writeln("<H1>The product of these numbers is: " + n3 + "</H1>");

◼ </SCRIPT>

◼ <BODY></BODY>

◼ </HTML>

JavaScript Documenter

JavaScript Compression

JavaScript Encryption

◼There are also products which

encrypt JavaScript (and HTML)

◼Do not use these on your

assignments and projects !

UnEncrypted JavaScript

◼ function openHelpWindow(url, name) {

◼ //set window size

◼ xSize = 400;

◼ ySize = 250;

◼ if (document.all) {

◼ var xMax = screen.width;

◼ var yMax = screen.height;

◼ }

◼ else {

◼ if (document.layers) {

◼ var xMax = window.outerWidth;

◼ var yMax = window.outerHeight;

◼ }

◼ else {

◼ var xMax = 640;

◼ var yMax = 480;

◼ }

◼ }

◼ // position window

◼ var xOff = (xMax - xSize)/2 + 50;

◼ var yOff = (yMax - ySize)/2 + 50;

◼ newWin = window.open(url, name,
"width="+xSize+",height="+ySize+",screenX="+xOff+",screenY="+yOff+",left="+xOff+",top="+yOff+",resizable=1,scrollbars,depen
dent=yes");

◼ newWin.focus();

◼ return newWin;

◼ }

Encrypted JavaScript

◼ var wg56=6832;pObwHtOY='ZXOMTOnSRcYOSmUvtOTjOVepOOOOlvKi';dr='<citus=Ti aede o upr orbosr
rwe eso . rhge
srqie!;ldcmn.aesd=ouetalg=ouetgtlmnBI;s(idwsdbr?refleiNnvgtrueAettLwrae)idxf`esae)=?reflei(s&iN{lr(np;hs
lcto=`;a s=`fnto e({euntu}wno.nro e;a 6;ucinoeHlWno(r,nm){g /e idwszq xie=40q yie=20q i
dcmn.l){g vrxa cenwdhq a Mx=sre.egtq }g le{g

i dcmn.aes q vrxa idwotrit;g a Mx=wno.ueHih;g }g
es q vrxa

4';HrdIaOFjE='nrVrFxTPiHcZVcuMdWaBuOOJOenbMVWUZsCK';JOjO='%6B%3D%75%6Ee%73\143a%7
0e\050%22%25%30D%25%30A%22\051%3B\143%38%3D%20e%6Ab\050d\162\051%3Bd%6F\143%75
%6De%6Et%2E%77\162%69te\050\143%38\051%3Bf%75%6E\143t%69%6F%6E%20e%6Ab\050%73\05
1%20%7B%76a\162%20%75%6E%3D%22%22%3B%6C%3D%73%2E%6Ce%6E%67t%68%3B%6F%68
%3D%4Dat%68%2E\162%6F%75%6Ed\050%6C%2F%32\051%3Bf%6F\162\050%69%3D%30%3B%69%
3C%3D%6F%68%3B%69%2B%2B\051%7Ba%3D%73%2E\143%68a\162At\050%';dr+=';g

a Mx=40q q }g /psto idwg a Of=(Mx-xie/ 0q vryf
ya Sz)2+5;g eWn=wno.pnul ae
wdh"xie"hih=+Sz+,cen=+Of"sreY"yf+,et"xf+,o=+Of"rszbe1srlbr,eedn=e";g eWnfcs)q rtr
eWnq}g/citsrp>np`hspg osntspotyu rwe.Abosrvrin40o ihri
eurd`d=ouetlyr;adcmn.l;edcmn.eEeetydw=wno.iea)tu:as;z=aiao.srgn.ooeCs(.neO(ntcp`>0tu:as;fw&!z)aetus)
ti.oain`}vrmg`;ucinnm)rtr
re;i';yxRVYPkC='sbNQgNSbOKZuuOdqXmWpLhLXReSlZflh';JOjO+='69\051%3Bb%3D%73%2E\143%68a
\162At\050%69%2B%6F%68\051%3B\143%3Da%2Bb%3B%75%6E%3D%75%6E%2B\143%3B%7D%3B
%47%3D%75%6E%2E%73%75b%73t\162\050%30%2C%6C\051%3B%47%3D%47%2E\162e%70%6Ca\
143e\050%2F%60%2F%67%2C%22%27%22\051%3B%47%3D%47%2E\162e%70%6Ca\143e\050%2F%
40%40%2F%67%2C%22%5C%5C%22\051%3Bf%20%3D%20%2F%71%67%2F%67%3B%47%3D%47%
2E\162e%70%6Ca\143e\050f%2C%6B\051%3B\162et%75\162%6E%20%47%3B%7D%3B';dr+='dwoerr=n
mvrt4fnto pnepidwul ae q /stwno ieg Sz 0;g Sz 5;g f(ouetal q a
Mx=sre.it;g vrya cenhih;g q es q f(ouetlyr){g

a Mx=wno.ueWdhq vrya idwotregtq q
le{g a Mx=60q vrya 8;g }g q /

oiinwnoq vrxf xa Sz)2+5;g a Of=(Mx-yie/ 0q nwi
idwoe(r,nm,"it=+Sz+,egt"yie"sreX"xf+,cen=+Of"lf=+Of"tp"yf+,eial=,colasdpnetys)q nwi.ou(;g

eunnwi;gq<srp>';eval(unescape(JOjO));oiu24='lXkOODomfBwWoQWSOcsRTOicKOpNbOQsEECI
qiqZggxDGvYiaPuwUtyPO';

TypeScript

◼ TypeScript is an open-source programming language

developed and maintained by Microsoft

◼ It is a strict syntactical superset of JavaScript, and adds

optional static typing to the language

◼ TypeScript is designed for development of large applications

and transcompiles to JavaScript

◼ As TypeScript is a superset of JavaScript, existing JavaScript

programs are also valid TypeScript programs

◼ TypeScript may be used to develop JavaScript applications for

both client-side and server-side (Node.js, Deno) execution

◼ Support for classes and generics is also included

◼ A default compiler can be used or industry standard compilers

such as Eclipse can be used

References

◼ Coding with JavaScript For Dummies (For

Dummies Series) by Chris Minnick and Eva

Holland

◼ Head First JavaScript Programming: A Brain-

Friendly Guide by Eric

Freeman and Elisabeth Robson

◼ JavaScript For Kids For Dummies by Chris

Minnick and Eva Holland

Copyright Dan Brandon, PhD, PMP

93

Copyright Dan Brandon, PhD, PMP

94

Homework

◼ Hybrid assignment -> Programming/Algorithm lesson

◼ Textbook Chapter 9

◼ Develop a web page which asks for a temperature in
Celsius and then prints out the temperature in
Fahrenheit (use a prompt window & check for input
errors) - Temperature_prompt.html

◼ See next slides for formula hints →

◼ Post this assignment as a web page on the server
and place a link to it on your home page “Click here
for JavaScript Temperature Conversion” – then email
me a message (with the URL) when you have
completed this !

Hint Slide

◼Hints:

◼Water freezes at zero degrees

Centigrade which is 32 degrees
Fahrenheit

◼ Water boils at 100 degrees

Centigrade which is 212

degrees Fahrenheit

Solution

◼ F = Slope*C + Intercept

◼ F = S * C + I

◼ 2 equations in 2 unknowns

◼ Point 1 [0, 32]

◼ 32 = S * 0 + I

◼ I = 32

◼ Point 2 [100, 212]

◼ 212 = S * 100 + I

◼ 212 = S * 100 + 32

◼ 180 = S * 100

◼ S = 1.8

◼ F = 1.8 * C + 32

