
Internet Programming

Multimedia

Dan Brandon, Ph.D., PMP

1Copyright Dan Brandon, PhD, PMP

Audio & Video

◼ In the not too distant past the
power of PC’s and the limited
bandwidth to most Internet users
made audio and video impractical

◼ With
◼ the ever increasing power of PC’s

◼ the increase in bandwidth to a large
number of users (faster modems,
cable modems, satellite, fiber, etc.)

◼ “steaming” transmission software

◼ vector graphics

◼ Audio and video content are now
practical

Linking to Media

◼ You may be able to link to different types of media (sound, video,
etc.), and as long as the browser used by the client is equipped and
configured for that media (without conflicting plug-ins), they may be
able to experience it, but “controls” will be lacking:
◼ <dl>

◼ <dt>2.
Approach to Earth (1 Mbyte)

◼ <dt>3.
Hawaiian Overflight (1.4 Mbyte)

◼ <dt>4.
Splashdown (845 Kbyte)

◼ <dt>5. Swimming with
the Dolphins (945 Kbyte)

◼ <dt>6.
Approach to the Mariana Trench (488 Kbyte)

◼ <dt>7. A Journey through
the Trench (262 Kbyte)

◼ <dt>8. Back to the
Surface...and Beyond (1.3 Mbyte)

◼ </dl>

Direct Link to Music
[http://facstaff.cbu.edu/dbrandon/Multimedia/ragtime.mid]

◼ <HTML><HEAD><TITLE>MUSIC</TITLE>

◼ </HEAD>

◼ <BODY>

◼ <H1>Music</H1>

◼ Click here for

music

◼ </BODY></HTML> The way these lesson examples

work (or not) may change with

browser and time.

http://facstaff.cbu.edu/dbrandon/Multimedia/ragtime.mid

Plug-ins and EMBED

◼ Plug-ins in older browsers are marked using
the embed element

<embed src=“url” type=“mime-type”

width=“value” height=“value” />

where url is the location of the media file,

type attribute provides the mime-type, and

width and height attributes set the width

and height of the media player

<EMBED SRC="Tada.wav" LOOP="true"></EMBED>

Copyright Dan Brandon, PhD, PMP

5

EMBED (con’t)

◼ The src, type, height, and width attributes

are generic attributes applied to embed

element for any plug-in

◼ The following embed element adds attributes

that are recognized by Apple’s QuickTime

Player to display the media player controls

and prevent the playback from starting

automatically:

<embed src=“cp_overture.mp3”

width=“250” height=“50”

controller=“yes” autoplay=”no” />
Copyright Dan Brandon, PhD, PMP

6

EMBED (con’t)

◼ Add the embed element to the end of the audio

element as the last option for a browser that

does not support HTML5 multimedia elements

◼ The browser will use the “application” defined

for that type of media in the browsers

preferences or options window (ie the Windows

Media Player); the application may be built into

the browser or may be a “plug-in” or “helper”

◼ Use of plug-ins has steadily declined since the

widespread adoption of HTML5 standard

Copyright Dan Brandon, PhD, PMP

7

Simple Wave File
[http://facstaff.cbu.edu/dbrandon/Multimedia/embed.html]

◼ <HTML>

◼ <HEAD><TITLE>EMBED</TITLE></HEAD>

◼ <BODY>

◼ <H1>Using the EMBED Element</H1>

◼ <EMBED SRC="Tada.wav" LOOP="true"></EMBED>

◼ </BODY>

◼ </HTML>

http://facstaff.cbu.edu/dbrandon/Multimedia/embed.html

EMBED (con’t)

◼ For Netscape (prior to version 6+) you must use it’s
“LiveAudio” capability (which is a Java Applet) and start it

◼ The code below is one way to implement sound so that it
works in both IE and Older Netscapes:
◼ <SCRIPT LANGUAGE="JavaScript">

◼ <!--

◼ function startMusic()

◼ {

◼ if (document.layers)

◼ document.theSound.play(false);

◼ }

◼ // -->

◼ </SCRIPT>

◼ </HEAD>

◼ <EMBED SRC=“myTune.mid" LOOP="true“

◼ HIDDEN="true" NAME="theSound" MASTERSOUND>

<BODY ONLOAD="startMusic()">

BGSOUND Tag
[http://facstaff.cbu.edu/dbrandon/Multimedia/bgsound.html]

◼ In IE, the BGSOUND tag may also be used:
◼ <HTML><HEAD><TITLE>BGSOUND</TITLE>

◼ <BGSOUND ID = "audio"

◼ SRC = "debussy.mid"

◼ LOOP = “-1">

◼ </BGSOUND>

◼ <SCRIPT LANGUAGE = "JavaScript">

◼

◼ </SCRIPT>

◼ </HEAD>

◼ <BODY>

◼ <H1>Background Music</H1>

◼ </BODY></HTML>

http://facstaff.cbu.edu/dbrandon/Multimedia/bgsound.html

MPEG

◼ Drives broke the $1/MB in 1994

◼ By 2004 the industry was approaching $1/GB, an
improvement of 36 thousand times since 1989, and 10
million since the first computers

◼ Memory now cost under 1 cent per MB

◼ Currently the common formatting/compression method
for audio is MP3 (Mpeg-1 audio layer 3)

◼ An 40 GB drive can hold up to 1000 CD’s

◼ MP3 files can be “played” by a number of software
products including the Windows Media Player

◼ Creating MP3 recordings takes two steps – “ripping” and
“encoding”

Ripping & Encoding

◼ Ripping refers to the process of extracting the
music from a media (as CD) into .wav files
◼ Many software products are available for ripping/encoding

(ie xingtech)

◼ Ideally this is done digitally, but in some situations it
must be done in an analog manner (playing the CD
thru the sound card and digitizing the output)

◼ Next the .wav files must be converted to MP3 format;
the CD track database can also be encoded in MP3

◼ Most CD’s can be digitally converted to MP3 at a rate
of 160Kbits/sec with almost no loss of fidelity (the
range of typical encoding is from 16 to 320Kbits/sec)

◼ At 160Kbits/sec, the compression ratio (from the .wav
file) is about 9/1

MP3

◼ What is MP3 (MPEG Layer 3)?

MP3 is an audio file format

◼ In the past, audio files were quite large, which is why

it hasn't been practical to store music on PCs

◼ An MP3 file is an audio file that has been

compressed (anywhere from 1/5 to 1/20 of its original

size) with little or no loss in sound quality

◼ That means a great sounding file, in a package small

enough that it can be downloaded and/or stored on

your computer

Recording

◼ What is the difference between analog and digital
recording?

The main difference is the speed with which you can
record. Analog recordings will always be equal to the play
speed, whereas digital recordings will be faster
(depending on your drive, PC processor and
compression type selected)

◼ The sound quality difference of analog recording
compared with digital should be minimal

◼ Conversion errors are primarily dependent on your PC
system

◼ Factors that will affect the sound quality are the
soundcard and the required level of multimedia real-time
performance

Napster

Spotify

iTunes

US Music Revenue

Copyright Dan Brandon, PhD, PMP

18

DRM

◼ What is DRM (Digital Rights Management)?
Most PC jukeboxes support three types of DRM technologies that include
InterTrust's DRM, Windows Media Technologies DRM and IBM EMMS

◼ InterTrust's sophisticated DRM technology is designed to protect and
manage peoples' rights and interests in digital information

◼ The software platform enables new commercial models and markets by
allowing people and organizations to define rules for using digital
information, apply rules persistently after information is distributed and
participate in a global system for digital commerce

◼ InterTrust's DRM platform is for all content providers who are developing a new spectrum of
advanced Internet purchase and distribution models using the Web and other networks

◼ The Windows Media solution provides simple rights management capabilities for vending content
over the Internet in an encrypted file format; this solution packages and encrypts the media files by
locking them with a key

◼ Consumers need to obtain a separate license containing the key to play a packaged media file with
the player

◼ Media files and licenses are stored and managed separately

◼ IBM's Electronic Music management system (EMMS) is a comprehensive e-business solution for
the sale and secure downloading of music

◼ The EMMS copyright management solution for electronic music distribution features clearinghouse
that tracks the sale of digital music content and manages access usage privileges as designated
by the music owner

DRM (con’t)

◼ Why is DRM needed?
The application of sophisticated DRM solutions in the
electronic commerce environment is designed to rapidly
expand the digital goods economy

◼ Digital rights management is needed across all digital
content industries, and by all of the constituencies in
these industries

◼ All parties want to get paid; artists and authors want to
protect the integrity of their works

◼ Consumers want easy transparent access to good
content but are concerned about protecting their privacy

◼ Producers, publishers and distributors want to structure
and optimally manage their business models

Quicktime Movies

◼ <EMBED SRC=“myMovie.mov”

HEIGHT=“320” WIDTH=“240”

CONTROLLER=“false” HREF=“http or rtsp

content” TYPE=video/quicktime”

TARGET=“myself”></EMBED>

MPG or AVI Movies
[http://facstaff.cbu.edu/dbrandon/Multimedia/splash.html]

Using DYNSRC Attribute of IMG tag

◼ <HTML><HEAD>

◼ <TITLE>Dynamic Source</TITLE>

◼ <BGSOUND SRC="spinnin.mid" LOOP="-1">

◼ </HEAD>

◼ <BODY>

◼ <H1>Video via DYNSRC Property</H1>

◼ <IMG DYNSRC="splashDown.mpg“

◼ WIDTH="180" HEIGHT="135"

◼ LOOP="-1" ALT="Splash Down Under Ocean">

◼ </BODY></HTML>

http://facstaff.cbu.edu/dbrandon/Multimedia/splash.html

Working with “Movies”

◼ Digital Video cameras and smartphones generally
produce .mov files that need to be “edited” and
converted to .avi files for web usage

◼ Apple’s QuickTime is free, but you need to buy
QuickTime Pro to get the conversion utility to go from
.mov to .avi

◼ Alternatively (and for free), you can go to
www.radgametools.com and download “RAD Video
Tools” to do the file conversion, editing, and make
Windows friendly bundles that can play whether
QuickTime is installed or not

◼ You can also convert individual frames of a .mov file into
.jpg or gif files

http://www.radgametools.com/

Video Editing

◼ Grab videos from DVD camcorder

◼ Cut scenes

◼ Apply transitions, titles, and effects

◼ Save to new file (or load back into
camcorder)
◼ Screenblast Movie Studio

◼ Microsoft Windows Movie Maker

◼ Dazzle MovieStar

◼ Ulead VideoStudio

◼ WinDVD Creator Plus

Microsoft Live Movie Maker

VRML

◼ Virtual Reality Modeling Language is a markup
language used to describe 3D objects

◼ VRML, like HTML, is pure text and can be
created with a plain editor like Wordpad or with
special VRML editors; the file extension is
“.wrl” (the files are called “worlds”)

◼ Many 3D modeling programs like CAD
(computer aided design) programs can save
their renderings in VRML format

◼ Netscape and IE have free plug-ins to display
VRML files (not installed on CBU computers)

HTML for VRML

◼ <HTML>

◼ <HEAD><TITLE>VRML</TITLE></HEAD>

◼ <BODY>

◼ <EMBED SRC = "myVRMLFile.wrl"

◼ WIDTH = "400" HEIGHT = "400">

◼ </BODY>

◼ </HTML>

Vrml.html

YouTube Videos

◼ YouTube videos are easy to embed in a web

page using YouTube’s HTML5 video player

◼ You can link to a YouTube video

◼ Or you can embed a YouTube video

◼ Click the Share button below the YouTube

video player to share it

◼ YouTube provides options to post a hypertext

link to the video to a multitude of social media

sites or to share the link via e-mail

Copyright Dan Brandon, PhD, PMP

30

YouTube Video (con’t)

◼ To embed a video within a website, click

Embed, which brings up a preview of the

embedded player and the HTML code that

needs to be added to the web page

◼ The general code for the embedded player is:

<iframe width=“value”

height=“value” src=“url”

frameborder=“0” allowfullscreen>

</iframe>

Copyright Dan Brandon, PhD, PMP

31

YouTube Video (con’t)

where,
◼ the url provides the link to the YouTube video

◼ width and height attributes define the

dimensions of the player embedded on a web

page

◼ frameborder attribute sets the width of the

border around the player in pixels

◼ allowfullscreen attribute allows the user to

play the video in full screen mode

Copyright Dan Brandon, PhD, PMP

32

Other Multimedia Products

◼ There are a number of special multimedia
products

◼ For these products you need an editing product
that allows you to create multimedia objects and
drawings in the products special format

◼ The client needs the to install the “plug-in”,
“helper”, or “viewer” on his PC and configure the
browser to associate a particular file extension
(and MIME type) with those types of files

◼ One product that used to be very popular is
Macromedia’s (Adobe) “Flash” = it is no longer
supported

OBJECT Element

◼ The object element is used to define browsers with

plug-ins
<object attributes>

parameters

</object>

where attributes define the object and parameters

are values passed to the object controlling the object’s

appearance and actions

◼ Parameters of the object are defined using param

element
<param name=“name” value=“value” />

where name is the name of the parameter and value is the

parameter’s value
Copyright Dan Brandon, PhD, PMP

34

HTML 5 Audio

◼ HTML5 has the “audio” element:

◼ <audio src=“…” attributes></audio>

◼ Or

◼ <audio src=“…” attributes />

◼ Attributes are:

◼ autoplay – true/false

◼ controls – true/false

◼ loop – true/false

◼ preload –none/metadata/auto

◼ onerror - failure event
35

HTML 5 Audio (con’t)

Copyright Dan Brandon, PhD, PMP

36

OGG (Theora)

◼ Originally HTML5

browsers could only

use the OGG format

for audio & video,

but that will change

in time

◼ Many file converters

are available

◼ http://www.smartaud

ioconverter.com/

37

HTML 5 Audio (con’t)

◼ HTML does not specify any one audio format

◼ Developers can pick a format that meets the needs of

their customers and clients

◼ Browsers and devices differ on support

◼ Before choosing an audio format, determine whether

the intended browser(s) will be able to play it

◼ Currently (2019):

Copyright Dan Brandon, PhD, PMP

38

HTML 5 Audio (con’t)

Copyright Dan Brandon, PhD, PMP

39

HTML 5 Audio (con’t)

Copyright Dan Brandon, PhD, PMP

40

HTML 5 Audio (con’t)

Copyright Dan Brandon, PhD, PMP

41

Audio Example

◼ <!DOCTYPE html>

◼ <html>

◼ <head>

◼ <meta charset="utf-8">

◼ <title>HTML5 Audio</title>

◼ </head>

◼ <body>

◼ <h1>HTML5 Audio</h1>

◼ <audio controls src="violin.ogg"></audio>

◼ </body>

◼ </html>
42

Audio Example (con’t)
[http://facstaff.cbu.edu/dbrandon/Multimedia/audio.html]

43

http://facstaff.cbu.edu/dbrandon/Multimedia/audio.html

HTML 5 Audio (con’t)

◼ To support the most browsers, nest several source

elements within a single audio element to provide

several versions of the same media file

<audio>

<source src=“url1” type=“mime-type” />

<source src=“url2” type=“mime-type” />

… </audio>

where, url1, url2,… are the URLs for each audio file and

mime-type specifies the audio format associated with

each file

Copyright Dan Brandon, PhD, PMP

44

HTML 5 Audio (con’t)

Copyright Dan Brandon, PhD, PMP

45

HTML 5 Audio (con’t)

◼ The appearance of a media player is

determined by the browser itself

◼ CSS can be applied to set the width of the

media player, add borders and drop

shadows, and apply filters and

transformations to the player’s appearance

Copyright Dan Brandon, PhD, PMP

46

HTML5 Video

◼A video file contains codecs for the

following:

◼ Audio

◼ Video images

◼The most popular video codec is H.264

used by YouTube and most commercial

vendors

◼Because H.264 is a commercial

product, it is not royalty free
Copyright Dan Brandon, PhD, PMP

47

HTML5 Video (con’t)

Copyright Dan Brandon, PhD, PMP

48

HTML5 Video (con’t)

Copyright Dan Brandon, PhD, PMP

49

HTML5 Video (con’t)

◼ Current (2019) browser support:

Copyright Dan Brandon, PhD, PMP

50

HTML5 Video

◼ HTML5 has the “video” element:

◼ <video height=“yy” width=“xx” src=“…”></video>

◼ Attributes are:

◼ autoplay – true/false

◼ controls – true/false

◼ height & width

◼ loop – true/false

◼ poster – URL for image if video is unavailable

◼ preload –none/metadata/auto

◼ onerror - failure event
51

Simple Video Tag

◼ <!DOCTYPE html>

◼ <html>

◼ <head>

◼ <meta charset="utf-8">

◼ <title>HTML5 Video</title>

◼ </head>

◼ <body>

◼ <h1>HTML5 Video</h1>

◼ <video height="300" width="400" src="j0011_5.ogg"></video>

◼ </body>

◼ </html>

52

Right Click to Play

53

Adding Controls

◼ <!DOCTYPE html>

◼ <html>

◼ <head>

◼ <meta charset="utf-8">

◼ <title>HTML5 Video</title>

◼ </head>

◼ <body>

◼ <h1>HTML5 Video</h1>

◼ <video controls height="300" width="400"

src="j0011_5.ogg"></video>

◼ </body>

◼ </html>

54

Adding Controls (con’t)

[http://facstaff.cbu.edu/dbrandon/Multimedia/video2.html]
[controls show when mouse over video]

55

http://facstaff.cbu.edu/dbrandon/Multimedia/video2.html

HTML5 Video (con’t)

◼ Multiple sources can be specified:

<video attributes>

<source src=“url1” type=“mime-type” />

<source src=“url2” type=“mime-type” />

… </video>

where attributes are HTML attributes that control

the behaviour and appearance of the video playback,
url1, url2,… are the possible sources of the video,

and mime-type specifies the format associated with

each video file

Copyright Dan Brandon, PhD, PMP

56

HTML5 Video (con’t)

Copyright Dan Brandon, PhD, PMP

57

HTML5 Video (con’t)

◼ CSS styling can be added:

Copyright Dan Brandon, PhD, PMP

58

HTML5 Video (con’t)

◼ The poster attribute defines a video’s preview

image
<video poster=”url”>

…

</video>

where url points to an image file containing the

preview image

◼ The poster attribute is used as a placeholder

image that is displayed when a video is being

downloaded

Copyright Dan Brandon, PhD, PMP

59

Making a Quality HTML 5 Video

◼ 1. Use high quality video: This means using vide in the original format. It’s

important to be aware that video compression is lossy and when you use it will

degrade the quality of your video.

◼ 2. Use a Tripod: For image stability and clarity, this is necessary. Do not use

handheld shots unless there is no other choice. As for the camera, open use a higher

f/stop setting (wider aperture) in low light situations, if your camera supports it. This

means that more light will reach the sensor and improve the quality of your shots.

◼ 3. Use an External Microphone: Most cameras have an external input that you

can make use of. A lavalier microphone could do the trick or if you're using the video

for a podcast later, you could make use of a Rodeway, Blue Yeti or Samson Meteor

microphone. Built in microphones should only be used as a last resort because they

don't perform as well.

◼ 4. Lighting: It is crucial to have good lighting and to make use of reflectors

(umbrellas), diffusion and scrims to shape the lighting if necessary. If the lighting is

poor, the end result will be a lot of noise in your video. The effect will be magnified

with compression.

◼ Ideally, it's wise to shoot in situations with a lot of natural light, but some situations

will not allow for that. In those cases, using simple (and inexpensive) work lamps, like

those found at construction sites could do the trick.
◼

Making a Quality HTML 5 Video (con’t)

◼ 5. Shoot Imagery Which Is Easy to See At a Small Scale: Since you’re

going to be working with smaller screens (especially with mobile) you need to

take that into account and create video imagery that is easy to see. You will

want to maximize the viewing space and if you use text, use it sparingly and at a

large size. Too small and you run the risk of losing your audience.

◼

◼ 6. Video Conversion: A simple solution for the video conversion is:

http://www.mirovideoconverter.com/. This is a free video tool which you can use

to convert your files into web formats.

◼

◼ 7. Make Sure Your Memory Card Supports Camera Movement (Panning)

at High Resolution Settings: If not, your pan will be choppy instead of fluid and

the result will be unusable. As an example, the pan might work perfectly at

640x480 but become choppy at an HD setting.

◼

◼ 8. Shoot in Progressive Mode: Interlaced video can have artifacts which

will damage the quality of the image.
◼

http://www.mirovideoconverter.com/

Making a Quality HTML 5 Video (con’t)

◼ 9. Shoot with a Shallow Depth of Field: The result is closer objects

stay in focus and shots behind the close objects become blurry. Outside

of the nice effect, the blurry parts are easier to compress.

◼

◼ 10. Wear Appropriate Clothing: While it’s important to wear

comfortable clothing, some clothing doesn’t work well with video. Here

are some guidelines:

◼ a. Avoid very light or very dark colors (including navy) because these clothes

could lose their detail on video

◼ b. Avoid red or orange. Red can sometimes appear to "crawl" on video

◼ c. Solid colors are good

◼ d. Avoid checked patterns such as hounds-tooth, tight stripes, plaid or

herringbone. These have a tendency to create Moire' patterns (rainbow

effects) on video

◼ e. Buttoned clothing is good (for a Lavalier or clip-on microphone)

◼ f. If you wear glasses, be careful of frames that cause reflections.

◼ g. Be careful with jewelry, especially dangly earrings or bracelets which could

cause noise. Also, make sure there aren’t any reflection issues.

HTML5 makes use of three major file types: MP4, WebM, and

Ogg/Ogv. The MPEG-4 file type is generally encoded in H.264.

Not all browsers support all three formats.

Making a Quality HTML 5 Video (con’t)

◼ With the different browsers, you will only be able to use two formats at most. The

basic code would be:

◼ <video width="640" height="480" controls>

◼ <source src=bucerias.mp4" type="video/mp4" />

◼ <source src="bucerias.ogv" type="video/ogg" />

◼ </video>

◼ If you are testing this within video design software, it may not work. Always, upload

the code to your server to test it. Do not trust the preview in web design software.

The acid test is ALWAYS testing the code live.

◼ Here are some optional video controls:

◼ • autoplay: With this attribute, the video will play back automatically without stopping to load

the rest of the data.

◼ • autobuffer: Here, the video will automatically buffer, even if it's not set to play

automatically.

◼ • controls: With this attribute you can control video playback, volume and pause or resume.

◼ • loop: Here, the video will automatically loop back to the beginning after reaching the

end.

◼ • preload: With this attribute, the video will loaded at page load and will be ready to play.

This is ignored if autoplay is used.

HTML5 Video Players

◼ HTML5 video players work within a browser

with CSS and JavaScript files

◼ It presents a customizable player that can be

adapted to the needs of business or

organization

◼ For example, YouTube player that provides

both the player and a hosting service for the

video content

Copyright Dan Brandon, PhD, PMP

65

HTML5 Video Players (con’t)

◼ HTML5 includes video players
◼ JWPlayer

◼ A popular commercial player that supports both HTML 5 and Flash video

◼ VideoJS

◼ A free player that works with the popular WordPress HTML framework

◼ Flowplayer

◼ Originally marketed as a Flash player, Flowplayer is a commercially

licensed audio and video player, payable as a one-time fee for perpetual

use

◼ Kaltura Player

◼ A free open-source video player that can be customized with user-created

player controls and skins to match the design of one’s website

◼ Wistia

◼ An HTML 5 video player focused on business needs and applications

Copyright Dan Brandon, PhD, PMP

66

References

◼ HTML5 Multimedia: Develop and Design

by Ian Devlin

◼ Multimedia Demystified by Jennifer Coleman

Dowling

◼ Multimedia Web Design and Development:

Using Languages to Build Dynamic Web

Pages by Theodor Richardson and Charles

Thies

Copyright Dan Brandon, PhD, PMP

67

Project Two Deliverables

◼Selected industry area web site

◼Common external stylesheet for all

pages

◼Forms

◼Multimedia

◼Rollovers

◼ JS validation of form data

Homework
[http://facstaff.cbu.edu/dbrandon/DansJukebox/DansJukebox.html]

◼ Textbook Chapter 8

◼ Appendices on Codecs, Text Tracks,
Animations/Transition, & Flash →

◼ Create a web page for your own jukebox

◼ Have a selection of songs (via drop
down or radio buttons) that can be
played (you can use .wav, .mid, or .mp3
[maybe] file format)
◼ Note that the CBU webmaster policy may

not allow you to place full MP3 files in your
web root

◼ Email URL to instructor

http://facstaff.cbu.edu/dbrandon/DansJukebox/DansJukebox.html

CODECS

Copyright Dan Brandon, PhD, PMP

70

Codec

◼ Codec: Computer program that encodes and

decodes streams of data

◼ Codecs compress data to transmit it in fast

and efficient manner

◼ Codecs decompress data when it is to be

read or played back

◼ The compression method can be either lossy

or lossless

Copyright Dan Brandon, PhD, PMP

71

Compression

◼ Lossy compression: Nonessential data is

removed in order to achieve a smaller file size

◼ Example:

◼ An audio file might be compressed by removing

sounds that the human ear can barely hear

◼ The more the file is compressed, the more the

content is lost

◼ Data removed during compression cannot be

recovered

Copyright Dan Brandon, PhD, PMP

72

Compression (con’t)

◼ Lossless compression: Data is compressed

by removing redundant information

◼ Example:

◼ AAAABBBBBCCCCCC requires 15 characters

of information, which can be rewritten using 6

characters as 4A5B6C

◼ Lossless compression cannot achieve the

same level of compression as with lossy

compression

Copyright Dan Brandon, PhD, PMP

73

Compression (con’t)

◼ Most codecs involve some combination of

lossy and lossless techniques

◼ Codecs are placed within a container that

handles the packaging, transportation and

presentation of data

◼ Container is the file format identified by a file

extension

Copyright Dan Brandon, PhD, PMP

74

Containers

◼ The web supports a multitude of container

and codec combinations

◼ Not all containers and codecs are equally

supported

◼ Example

◼ Google Chrome uses the WebM container for

video content, compressing that data with the

VP8 codec; however, that combination of

container and codec is not supported by any

Apple device

Copyright Dan Brandon, PhD, PMP

75

Plug-ins

◼ Media player: Decodes and plays multimedia

content stored within a container file

◼ Plug-in: Software program accessed by a

browser to provide a feature or capability not

native to the browser

◼ A plug-in either opens in its own external

window or runs within the web page as an

embedded object

Copyright Dan Brandon, PhD, PMP

76

Plug-ins (con’t)

◼ Problems with the plug-in approach for delivery of

multimedia content

◼ Plugs-ins require users to install a separate application in

addition to their web browsers

◼ A common plug-in is not available across all browsers,

operating systems, and devices

◼ HTML documents that support multiple plug-ins are difficult

to create and maintain

◼ Plug-ins consume valuable system resources, resulting in

slow and unreliable performance

◼ Plug-ins are a security risk with some of the most

prominent Internet attacks working their way into browsers

via a plug-in
Copyright Dan Brandon, PhD, PMP

77

ADDING TEXT

TRACK TO VIDEOS

Copyright Dan Brandon, PhD, PMP

78

Text Tracks

◼ A text track that needs to be read or recited to

visually impaired users can be added to a

media clip

◼ Allows audio and video content to be

accessible to all users

◼ Text tracks are added to an audio or video
clip using track element

Copyright Dan Brandon, PhD, PMP

79

Text Tracks (con’t)

<track kind=“type” src=“url”

label=“text” srclang=“lang” />

where,

◼ the kind attribute defines the track type

◼ the src attribute references a file containing the

track text

◼ the label attribute gives the track name

◼ the srclang attribute indicates the language of

the track

Copyright Dan Brandon, PhD, PMP

80

Text Tracks (con’t)

Copyright Dan Brandon, PhD, PMP

81

Text Tracks (con’t)

◼ Tracks are stored as simple text files written

in Web Video Text Tracks or WebVTT

language

◼ Format of a WebVTT file

WEBVTT

cue1

cue2

…

where cue1, cue2,… are cues matched with

specific time intervals within a media clip

Copyright Dan Brandon, PhD, PMP

82

Text Tracks (con’t)

◼ List of cues is separated by a single blank

line after a cue text

◼ White space is not ignored in WebVTT files

◼ General form of a cue

label

start --> stop

cue text

where label is the name assigned to the

cue, start and stop define the time

interval, and cue text is the text of the cue

Copyright Dan Brandon, PhD, PMP

83

Text Tracks (con’t)

Copyright Dan Brandon, PhD, PMP

84

Text Tracks (con’t)

◼ Size and position of a cue text can be set

using cue settings directly after the cue’s time

interval

setting1:value1 setting2:value2 …

where setting1, setting2, … define the size

and position of the cue text and value1,

value2, … are the setting values

◼ There is no space between the setting name

and value

Copyright Dan Brandon, PhD, PMP

85

Text Tracks (con’t)

Copyright Dan Brandon, PhD, PMP

86

Text Tracks (con’t)

Copyright Dan Brandon, PhD, PMP

87

Text Tracks (con’t)

◼ cue pseudo-element to format the

appearance of the cues appearing within a

media clip

::cue {

styles

}

◼ Styles for the cue pseudo-element are limited

to background, color, font, opacity,
outline, text-decoration, text-

shadow, visibility, and white-space

properties
Copyright Dan Brandon, PhD, PMP

88

Text Tracks (con’t)

◼ Format specific cues or text strings within a

cue using the following markup tags:

◼ <i></i> for italicized text

◼ for bold-faced text

◼ <u></u> for underlined text

◼ to mark spans of text

◼ <ruby></ruby> to mark ruby text

◼ <rt></rt> to mark ruby text

Copyright Dan Brandon, PhD, PMP

89

Text Tracks (con’t)

◼ WebVTT supports tags that are not part of the

HTML library

◼ <c></c> tag is used to mark text strings

belonging to a particular class

<c.classname></c>

◼ <v></v> tag is used for captions that

distinguish between one voice and another

<v name></v>

Copyright Dan Brandon, PhD, PMP

90

Text Tracks (con’t)

Copyright Dan Brandon, PhD, PMP

91

ANIMATIONS &

TRANSITIONS

Copyright Dan Brandon, PhD, PMP

92

Transitions

◼ Transition: Change in an object’s style from the

initial state to the ending state, usually in response to

an event initiated by the user or the browser

◼ It slows down the change from one color to another

and provides intermediate styles

◼ To create transition, employ the following transition

style:

transition: property duration;

where property is a property of the object that

changes between the initial and end states and
duration is the transition time in seconds or

milliseconds

Copyright Dan Brandon, PhD, PMP

93

Transitions (con’t)

◼ Varying speed of transition is defined using

transition: property duration

timing-function;

where timing-function is one of the

following keywords:

◼ ease: (the default) Transition occurs more

rapidly at the beginning and slows down near the

end

◼ ease-in: Transition starts slowly and maintains

a constant rate until the finish

Copyright Dan Brandon, PhD, PMP

94

Transitions (con’t)

timing-function keywords (continued)

◼ ease-out: Transition starts at a constant rate

and then slows down toward the finish

◼ ease-in-out: Transition starts slowly, reaches

a constant rate, and then slows down toward the

finish

◼ linear: Transition is applied at a constant rate

throughout the duration

Copyright Dan Brandon, PhD, PMP

95

Transitions (con’t)

◼ Timing function can be visualized as a graph

◼ It shows the progress of transition vs.

duration

◼ The graphical representation of the timing

function is the basis of another measure of

transition timing using

cubic-bezier(n, n, n, n)

Where the n parameter values define the shape of

the timing curve

Copyright Dan Brandon, PhD, PMP

96

Transitions (con’t)

◼ Transition does not need to start immediately

after the event that triggers it

◼ Start of the transition can be delayed by
adding delay value to the following:

transition: property duration

timing-function delay;

where delay is measured in seconds or

milliseconds

Copyright Dan Brandon, PhD, PMP

97

Transitions (con’t)

◼ The transition property can be added to slow down

the transition from initial to end state

◼ Limitations of transition

◼ It can only be run when a CSS property is being

changed, such as during the hover event

◼ It is run once and cannot be looped for

repetition

◼ Initial and end states of the transition can be

defined but not the styles of intermediate states

• Animation is created to overcome the limitations

Copyright Dan Brandon, PhD, PMP

98

Transitions (con’t)

Copyright Dan Brandon, PhD, PMP

99

Animation

◼ Key frame: Sequence of changing images to

create illusive movement for animation

◼ CSS replaces the concept of key frame images

with key frame styles that are applied in rapid

succession to a page object

◼ To define a sequence of key frames in CSS,
apply the following @keyframes rule

@keyframes name {

keyframe1 {styles;}

keyframe2 {styles;}

…}
Copyright Dan Brandon, PhD, PMP

100

Animation (con’t)

where,

◼ name provides the name or title of the animated

sequence

◼ keyframe1, keyframe2, and so on defines the

progress of individual key frames

◼ styles are the styles applied within each key

frame

Copyright Dan Brandon, PhD, PMP

101

Animation (con’t)

◼ Key frames animation is applied to an object
using animation-name and animation-

duration properties

animation-name: keyframes;

animation-duration: times;

where keyframes is a comma-separated list

of animations applied to the object using the
names from the @keyframes rule and

times are the lengths of each animation

expressed in seconds or milliseconds

Copyright Dan Brandon, PhD, PMP

102

Animation (con’t)

Copyright Dan Brandon, PhD, PMP

103

Animation (con’t)

Copyright Dan Brandon, PhD, PMP

104

Animation (con’t)

◼ Animation can have two states of operation

◼ Play or pause

◼ Check box can be used to control animation

◼ Selecting the check box will play the

animation

◼ Unselecting the check box will pause the

animation

Copyright Dan Brandon, PhD, PMP

105

Animation (con’t)

Copyright Dan Brandon, PhD, PMP

106

Animation (con’t)

◼ Check box can be replaced with more

attractive icons

◼ Display symbol  to run the animation

◼ Unicode value of \21bb

◼ Display symbol  to pause the animation

◼ Unicode values of \270b

Copyright Dan Brandon, PhD, PMP

107

Animation (con’t)

Copyright Dan Brandon, PhD, PMP

108

FLASH

Copyright Dan Brandon, PhD, PMP

109

Macromedia Flash

◼ Flash “movies” are interactive vector graphics

and animation for web sites

◼ In Flash, you create a movie by drawing (or

importing) artwork, arranging it on a “stage”,

and animating it with a “timeline” (path of

movement in time and space).

◼ You can make the movie interactive by making

it respond to events and to change in specified

ways; sound can also be added

Flash (con’t)

◼ Flash had become the technology of choice for
creating rich, interactive, multimedia content for
the web before HTML5 was available

◼ Three factors that had greatly contributed to the
technology's popularity are:
◼ The .swf format can compress both images and sounds

◼ The format allows for the inclusion/use of vector formats,
scaleable graphics with very small file sizes

◼ The Flash player's streaming capabilities, which allow
preloading images and sounds into the visitor's browser cache,
and animation to stream while playing, rather than making the
visitor wait for it to fully download

◼ Flash is no longer supported by Adobe

javascript:hhpopuplink.TextPopup(popid_swfdefinition,FontFace,-1,-1,-1,-1)

FLASH

◼ The most-used plug-in for video playback is

Adobe Flash player embedded using the
following object element:

<object data=“url”

type=“application/x-shockwave-

flash”

width=“value” height=“value”>

<param name=“movie” value=“url” />

parameters

</object>

Copyright Dan Brandon, PhD, PMP

112

FLASH (con’t)

Copyright Dan Brandon, PhD, PMP

113

FLASH (con’t)

Copyright Dan Brandon, PhD, PMP

114

Flash (con’t)

◼ When one has built the movie, it can be

“published” where by the movie file (*.swf)

and corresponding HTML sniplet is generated

(browser needs Flash “player” installed)

◼ Movies can also be published in other

formats such as animated gif’s

◼ A trial version of Flash can be downloaded

at:

◼ www.macromedia.com/software/flash/trial/

Flash Concepts

◼ Movie – a flash “document” (.fla) that can be
published in a variety of formats; it is composed
of frames along a “timeline”
◼ Vector (.swf)

◼ Gif (.gif)

◼ Executable (.exe)

◼ Stage – the composing/drawing area showing
the layer(s) of each frame

◼ Frame – a single moment in a timeline; a frame
is composed of superimposed “layers”

◼ Layer – an x-y drawing surface

Key Flash Features

◼Vector graphics – uses geometric

formulas to draw curves that define

images instead of bitmaps; reduces

file sizes of images

◼Tweening – the process of

automatically creating the frames in

between “key frames”

Flash MX Workspace

First Key Frame in a Scene

Last Key Frame in a Scene
[with motion tween]

Publishing Format

◼ <HTML>

◼ <HEAD>

◼ <meta http-equiv=Content-Type content="text/html; charset=ISO-8859-1">

◼ <TITLE>MovingText</TITLE>

◼ </HEAD>

◼ <BODY bgcolor="#999999">

◼ <OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000“

◼ codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash
.cab#version=6,0,0,0"

◼ WIDTH="300" HEIGHT="300" id="MovingText" ALIGN="">

◼ <PARAM NAME=movie VALUE="MovingText.swf">

◼ <PARAM NAME=quality VALUE=high>

◼ <PARAM NAME=bgcolor VALUE=#999999>

◼ <EMBED src="MovingText.swf" quality=high bgcolor=#999999

◼ WIDTH="300" HEIGHT="300" NAME="MovingText" ALIGN=""

◼ TYPE="application/x-shockwave-flash"

◼ PLUGINSPAGE="http://www.macromedia.com/go/getflashplayer">

◼ </EMBED>

◼ </OBJECT>

◼ </BODY>

◼ </HTML>

MovingText.html – works in

Both most browsers !!

Start of Animation

End of Animation

This Paints Quickly
[http://facstaff.cbu.edu/dbrandon/Flash/Skywriting.html]

http://facstaff.cbu.edu/dbrandon/Flash/Skywriting.html

HTML for Flash Movie
[Flash Product can generate HTML]

◼ <HTML>

◼ <HEAD>

◼ <TITLE>Skywriting</TITLE>

◼ </HEAD>

◼ <BODY bgcolor="#FFFFFF">

◼ <H1>Flash Format "Movie"</H1>

◼ <OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000“

◼ codebase="http://active.macromedia.com/flash2/cabs/

◼ swflash.cab#version=4,0,0,0"

◼ ID=Skywriting WIDTH=320 HEIGHT=240>

◼ <PARAM NAME=movie VALUE="Skywriting.swf">

◼ <PARAM NAME=quality VALUE=high> <PARAM NAME=bgcolor VALUE=#FFFFFF>

◼ <EMBED src="Skywriting.swf" quality=high bgcolor=#FFFFFF

◼ WIDTH=320 HEIGHT=240 TYPE="application/x-shockwave-flash“

◼ PLUGINSPAGE="http://www.macromedia.com/

◼ shockwave/download/index.cgi?

◼ P1_Prod_Version=ShockwaveFlash">

◼ </EMBED>

◼ </OBJECT>

◼ </BODY>

◼ </HTML>

Also instructs browser

to download flash

player, if not loaded

HTML for Animated Gif Files

◼ <HTML>

◼ <HEAD>

◼ <TITLE>Animated Gif</TITLE></HEAD>

◼ <BODY>

◼ <H1>Animated Gif Produced by

Flash4</H1>

◼

◼ </BODY>

◼ </HTML>

This Paints Slowly
[http://facstaff.cbu.edu/dbrandon/Flash/Sky_gif.htm]

http://facstaff.cbu.edu/dbrandon/Flash/Sky_gif.htm

HTML5 Multimedia

◼ Using proprietary media such as Flash may limit
your market for E-Commerce type applications

◼ If you want a wide (and world wide) audience,
you need to write JS to determine the browser
and version; if the user has an old version of a
browser he probably has an older PC that will
not support modern media (so serve up a plain
HTML page to that type of user)

◼ HTML5 now has its own drawing and
multimedia capability, but not yet fully supported
for all browsers and media formats

Macromedia FLEX
[HTML5 will likely dominate this market in time]

SWiSH

SWiSH

◼ The animation created is called a Movie. Within each
Movie is a collection of Scenes. Each Scene has a
Timeline consisting of multiple Frames.

◼ During the Timeline of each Scene, you place objects
(e.g. text, images, etc.) to which you apply Effects.
These Effects will start and stop at particular Frames
and can be controlled by inserting Actions and Events.
◼ In Scenes, Events occur when the Movie reaches a certain Frame. For

objects, Events occur when you interact with an object using the
mouse, such as rolling the mouse cursor over the object or clicking on
it.

◼ An Event can trigger more than one Action. For example, when the mouse
rolls over an object, the Movie can be stopped (with a Stop Action) and the
browser can be told to load an URL into another Frame (with the Goto URL
Action).

◼ Actions are operations that are triggered by Events. Actions can alter the
playing of the Movie, start or stop sounds, load other Movies or web pages, or
communicate with the host browser or player.

mk:@MSITStore:C:/Program%20Files/SWiSH%20v2.01/Swish2.chm::/movie.htm
mk:@MSITStore:C:/Program%20Files/SWiSH%20v2.01/Swish2.chm::/scenes.htm
mk:@MSITStore:C:/Program%20Files/SWiSH%20v2.01/Swish2.chm::/timeline.htm
mk:@MSITStore:C:/Program%20Files/SWiSH%20v2.01/Swish2.chm::/timeline.htm
mk:@MSITStore:C:/Program%20Files/SWiSH%20v2.01/Swish2.chm::/objects.htm
mk:@MSITStore:C:/Program%20Files/SWiSH%20v2.01/Swish2.chm::/effects.htm
mk:@MSITStore:C:/Program%20Files/SWiSH%20v2.01/Swish2.chm::/actions.htm
mk:@MSITStore:C:/Program%20Files/SWiSH%20v2.01/Swish2.chm::/events.htm

