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Forms
◼ A “form” is a group of data capturing widgets 

(controls) placed on an HTML page

◼ The form typically communicates the information 
(the user enters into the widgets) over the 
communication link to the Internet server via 
HTTP protocol encoded in a certain way 
(URLEncoded)

◼ Part of that HTTP protocol is the designation of a 
server side program which processes the form 
information; that program (in C/C++/Perl) is often 
called a CGI (Common Gateway Interface) script
or server page (in PHP, ASP, etc.)



Forms (con’t)
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Forms (con’t)

◼ Forms start with a <form> tag and end with </form>

◼ Within the <form> tag arguments are needed for the 
method of data transfer (post or get) to the server 
program (method=) and the name of the server program 
(action=):

◼ <form method=“post” action=“...path of server 
program”>

◼ For the form data to be routed to the mail server, the 
ACTION is “mail to: jdoe@mail.cbu.edu”



Forms (con’t)

◼ There are several widgets that can be placed on the 

form such as text fields, text areas (multi line), radio 

buttons, check boxes, selection lists, submit buttons, and 

reset buttons

◼ For text fields, submit buttons, reset buttons, and radio 

buttons, you use the INPUT tag

◼ For text fields, the INPUT tag has arguments for Type 

(“text”), Size, ID, and Name:

◼ <input type=“text” size=15 name=“City”>

◼ The ‘name’ above does not show on the web page, it is 

used to identify the keyed-in info when it is sent to the 

server 



Forms (con’t)

◼ For buttons, the INPUT tag has arguments for 
Type, Name, and Value

◼ For radio buttons, use the same name:
◼ <input type=“radio” name=“paytype” value=“cash”>

◼ <input type=“radio” name=“paytype” value=“check”>

◼ <input type=“radio” name=“paytype” value=“credit”>

◼ By default, submit buttons send the form data 
to the server, reset buttons clear the data
◼ <input type=“submit” name=“submit” value=“submit”>

◼ <input type=“reset” name=“reset” value=“reset”>



INPUT Types
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INPUT Types (con’t)
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Sample Form

◼ <hr> Please enter the following customer data: <br>

◼ <form method=“post” action=“...path of cgi script”>

◼ Name:<input type=“text” size=30 
name=“cust_name”>

◼ City:<input type=“text” size=15 name=“cust_city”>

◼ State:<input type=“text” size=2 name=“cust_state”>

◼ <br><br>

◼ <input type=“submit” name=“submit” value=“submit”>

◼ <input type=“reset” name=“reset” value=“reset”>

◼ </form><hr>



Data Transfer Methods

◼ Both the GET and POST method is used to 

transfer data from client to server in HTTP protocol

◼ The main difference between POST and GET 

method is that GET carries request parameter 

appended in URL string while POST carries 

request parameter in message body

◼ POST is a more secure way of transferring data 

from a client but less efficient (for short strings)

◼ There is also the optional enctype attribute which 

specifies how the form data should be encoded as 

it is sent to the server



Encoding Type
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Tab Order and Access keys

◼ Form fields can also be assigned a “tab order”, “access 

key” via “label”/“id”

◼ <label for=“ln” accesskey=“L”>

◼ Last Name:

◼ </label>

◼ <input id=“ln” name=“lastname” type=“text” tabindex=“1”>

◼ There is also a “button” tag for making your own buttons 

and including images

◼ Uploading Files (type=file):

◼ Subject Photo (Local File Path):<input type="file" name="sPhoto" 

size="40" maxlenght="60">



◼ <html><head><title>Sample Form</title></head>

◼ <body">

◼ <h1 align=center>sample form</h1>

◼ <p>

◼ <hr>Please enter the following info:<br>

◼ <form method="post" action="http://www.cbu.edu/~dbrandon/echo.php">

◼ <label for="name" accesskey="n">

◼ Name: <input tabindex="1" id="name" type="text" size=30 name="name">

◼ </label><br>

◼ <label for="city" accesskey="c">

◼ City:&nbsp&nbsp <input tabindex="2" id="city" type="text" size=15 name="city">

◼ </label><br>

◼ <label for="state" accesskey="s">

◼ State: <input tabindex="3" id="state" type="text" size=2 name="state">

◼ </label>

◼ <br>

◼ <br>

◼ <button name="submit" type="submit"><img src="satisfied.gif" height=50 width=50 
alt="submit it!"></button>

◼ &nbsp&nbsp&nbsp&nbsp

◼ <button name="reset" type="reset"><img src="ohhno.gif" height=50 width=50 alt="reset 
it!"></button>

◼ </form>

◼ </body>

◼ </html>



Forms (con’t)



Form Position and Layout

◼ A form element can be placed anywhere within 

the body of a page

◼ Forms can contain page elements such as 

tables, paragraphs, inline images, and headings

◼ Forms can be laid out using a table(s) or CSS, 
and this is a common way to design a web form

◼ To really do anything significant with HTML 
forms you have to write the program on the 
server that will process the data from the form 
such as updating a database, querying a 
database, etc.

http://www.youtube.com/watch?v=NPGCn9P3Lh8


Common Layouts
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Field Sets

◼ A Field set is a group of widgets that share a 

common purpose

◼ Field sets are created using the fieldset

element

<fieldset id=“id”>

content

</fieldset>

where id identifies the field set and content

is the form content within the field set
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Field Sets (con’t)

◼ A legend describes the content of a field set 
using the legend element

<legend>text</legend>

where text is the text of the legend

◼ The legend element contains only text and 

no nested elements

◼ By default, legends are placed in the top-left 

corner of the field set box and can be moved 

to a different location using the CSS 

positioning styles
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Field Sets (con’t)

Copyright Dan Brandon, PhD, PMP

19



Field Sets and INPUT Widgets
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Legend and Labels
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Default Values
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Placeholders
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Example Placeholders and Default 

Values
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Testing Forms
[ACTION="http://www.danbrandon.com/echo.php">]

Echo site: http://www.danbrandon.com/echo.php



Lab 9

◼ Add a simple form, and use the “echo site” (on 

an earlier slide) to test out your form



Selection List

◼ A selection list is a list box that presents users 

with a group of possible values for the data field

◼ The list is created with the select and option
<select name=”name”>

<option value=”value1”>text1</option>

<option value=”value2”>text2</option>

...

</select>

◼ Where
◼ value1, value2,… are the possible field values

◼ text1, text2,… are the text of the entries in the selection 

list that users see on the web form
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Selection List (con’t)
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Selection List (con’t)

◼ By default, a selection list appears as a drop-down list

◼ To display a selection list as a scroll box, use the size

attribute to the select element:

<select size=“value”> ... </select> 

where value is the number of options that the selection 

list displays at one time

◼ By default, selection lists allow only one selection from 

the list of options

◼ To allow more than one item to be selected, add the 
multiple attribute

<select multiple> ... </select>
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Selection List (con’t)

◼ Two ways for users to select multiple items

◼ For non-contiguous selection, press and hold the Ctrl 

key while making the selections

◼ For contiguous selection, select the first item, hold the 

Shift key, and then select the last item in the range

◼ Organize selection list options by placing them in option 
groups using the optgroup element
<select>

<optgroup label=”label1”>

<option>text1</option>

<option>text2</option>

</optgroup>

</select>
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SELECT and Option Group
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Radio (option) Buttons

◼ Unlike selection lists, the options appear as separate 

controls in the web form

◼ They are created with a group of input elements with a 

type attribute value of “radio”

<input name=“name” value=“value1” type=“radio” />

<input name=“name” value=“value2” type=“radio” />

…

where value1, value2, … are the field values associated with each

◼ Set an option button to be selected as the default by 
adding the checked attribute to the input element

<input name=”name” type=”radio” checked />
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Radio Buttons (con’t)
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Check Boxes

◼Check boxes are designed for fields that 

record the presence or absence of an 

something

◼They are created using the input element

with the type attribute set to “checkbox”
<input name=“name” value=“value” 

type=“checkbox” />

where value attribute contains the value of the 
field when the check box is checked and type

attribute indicates a check box

Copyright Dan Brandon, PhD, PMP

34



Check Box (con’t)
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Text Area

◼ Text area is created using the textarea element

<textarea name=“name”>

text

</textarea>

where text is the default value of the data field

• HTML supports the rows and cols attributes to set size

<textarea rows=”value” cols=”value”>

...

</textarea>

Where the rows attribute specifies the number of lines 

in the text area box and the cols attribute specifies the 

number of characters per line
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Text Area (con’t)
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DataList Suggestions

◼ A data list can be used to “suggest” some 

possible input:
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Hidden Fields

◼ Hidden fields do not appear in the browser, but 

let the web page send information to the server

◼ <INPUT type=“hidden” name=“xxx” value=“zzz”>

◼ Hidden fields let web developers include data 

that cannot be seen or modified by users when a 

form is submitted

◼ Hidden fields were used to maintain state 

between pages such as session info, login info, 

or storing what database record that needs to be 

updated when the form is submitted; server 

languages such as PHP provide better ways now



HTML 5 Extensions for Forms

◼ HTML 5 provides new types of form controls which may 

provide both error checking and/or entry aids such as 

“pickers”:
◼ range (exact number not important)

◼ number

◼ telephone number

◼ color

◼ date, time, datetime (UTC), datetime-local, month, week

◼ email

◼ image

◼ search

◼ url

◼ password

◼ New attributes and functions are also available



HTML5 Forms (con’t)
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Time/Date Fields

◼ Indicated using type attributes:

◼ date

◼ time

◼ datetime-local

◼ month

◼ week
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Spinner

◼ Spinner control: Displays an up or down arrow 

to increase or decrease the field value by a set 

amount

◼ To create a spinner control, apply the input

element using the number data type
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Slider

◼ Slider control: Limits a numeric field to a 

range of possible values

◼ To create a slider control, apply the range data 
type in the input element
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Example HTML5 Form



Example HTML5 Form
[showing email validation]



Example HTML5 Form
[showing “date picker”]



Example HTML 5 Form Code
◼ <!DOCTYPE html>

◼ <html>

◼ <head>

◼ <meta charset="utf-8">

◼ <title>Example HTML5 Form</title>

◼ </head>

◼ <body>

◼ <h1 style="text-align:center">Example HTML5 Form</h1>

◼ <form method="post" action="echo.php">

◼ <table align="left">

◼ <tr>

◼ <td>Last Name:</td><td><input name="lname' placeholder="Enter your last name" autofocus></td>

◼ </tr>

◼ <tr>

◼ <td>First Name:</td><td><input name="fname' placeholder="Enter your first name"></td>

◼ </tr>

◼ <tr>

◼ <td>Email:</td><td><input type="email" name="email' placeholder="Enter your email address"></td>

◼ </tr>

◼ <tr>

◼ <td>Tele:</td><td><input type="tel" name="tele' placeholder="Enter your telephone number"></td>

◼ </tr>

◼ <tr>

◼ <td>Weight:</td><td><input type="range" min="50" max="1000" step="10" value="170" name="weight" placeholder="Enter your 

weight in pounds"></td>

◼ </tr>

◼ <tr>

◼ <td>Height:</td><td><input type="number" min="36" max="96" step="2" value="72" name="height" placeholder="Enter your weight 

in pounds"></td>

◼ </tr>

◼ <tr>

◼ <td>Birthdate:</td><td><input type="date" name="bdate' placeholder="Enter your birthdate"></td>

◼ </tr>

◼ <tr>

◼ <td>Birthtime:</td><td><input type="time" name="btime' placeholder="Enter your birth time (24 hour)"></td>

◼ </tr>

◼ <tr>

◼ <td>Website:</td><td><input type="url" name="web' placeholder="Enter your web site"></td>

◼ </tr>

◼ <tr>

◼ <td>Eye Color:</td><td><input type="color" name="ecolor' placeholder="Enter your eye color"></td>

◼ </tr>

◼ </table>

◼ <br clear="all">

◼ <input type="submit" value="SUBMIT">

◼ <input type="reset" value ="RESET">

◼ </form>

◼ </body>

◼ </html>



Pattern Attribute

◼ If none of these new input types suits your 

needs, HTML 5 provides the pattern attribute for 

input elements with type="text“

◼ The value of the pattern attribute is a regular

expression, as defined in ECMAScript and used 

in JavaScript (discussed later in this course)

◼ For example, if one wanted to match a five-digit 

or nine-digit US ZIP code or a six-character 

Canadian postal code, one could use this 

pattern:

◼ ([0-9]{5}(-[0-9]{4})?)|([A-Z][0-9][A-Z]\s+[0-9][A-Z][0-9])

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf


Pattern Attribute (con’t)

◼<input type=“text” name=“postCode” 

required=“required”

◼ pattern=“([0-9]{5}(-[0-9]{4})?)|([0-9][A-

Z][0-9]\s+[A-Z][0-9][A-Z])”

◼ title=“US: 99999-1234; Canadian: 

0A1&#160;B2C” /> 



Form Validation

◼ Validation: Process of ensuring that a user 

has supplied valid data

◼ Types of validation

◼ Server-side validation – validation occurs on 

the web server

◼ Client-side validation – validation occurs in 

the user’s browser

◼ Client-side validation is preferred where 

possible
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Validation (con’t)

◼The first validation test is to verify if data 

is supplied for all the required data fields

◼Add the required attribute to the control 

to identify the required data fields

◼ If a required field is left blank, the 

browser will not submit the form returning 

an error message to indicate the 

unavailability of data
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Validation (con’t)

◼ The syntax to define the maxlength attribute 

is <input maxlength=“value” />

where value is the maximum number of 

characters in the field value

◼ Example:

<input name=”custZip” maxlength=“5” 

/>

• The maxlength attribute does not 

distinguish between characters and 

digits
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Validation (con’t)

◼ A form fails the built-in validation test if the data 

values entered into a field do not match the 

field type

◼ Example:

◼ A data field with the number type will be rejected if 

nonnumeric data is entered

◼ Fields with email and url types will be rejected if a 

user provides an invalid e-mail address or text that 

does not match the format of a URL

◼ To go beyond built-in validation, one needs to use 

JavaScript which is covered later in the course
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Validation (con’t)

◼ Inline validation: The technique of 

immediate data validation and reporting 

of errors

◼The focus pseudo-class is used to 

change the display style of fields that 

currently contain invalid data

◼ Focus: The state in which an element has 

been clicked by the user, making it the 

active control on the form
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Validation (con’t)
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Validation (con’t)

◼ Example: To create styles for all of the 

checked option buttons in the form, apply the 
checked pseudo-class

input[type=”radio”]:checked {

styles

}

where styles are the CSS styles applied to 

checked option buttons
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Validation (con’t)

◼ The valid and invalid pseudo-classes are 

used to format controls based on whether 

their field values pass/fail a validation test

◼ Example: To display input elements 

containing valid data with a light green 

background, use the following style rule:

input:valid {

background-color: rgb(220, 255, 

220);

}
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Validation (con’t)

◼ Example: To display input elements 

containing invalid data with a light red 

background with focus, use the following style 

rule:

input:focus:invalid {

background-color: rgb(255, 232, 

233);

}
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Validation (con’t)
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Image Maps

◼ Image maps allow you to associate links with 
portions of an image

◼ To associate an image with a map, simply set 

the property ‘USEMAP” to the name of the 

image map:

◼ <img src=myImage.gif usemap=“#myMap”>

◼ myMap works like the label for intrapage links 

– the imagemap img link must match a MAP 

tag



Defining the Map

◼ The map identifies areas within the image using 
relative pixel coordinates

◼ The relative coordinate systems has the origin 
(0,0) at the top left of the image

◼ MAP and nested AREA tags are used:
◼ <MAP NAME=“myMap”>

◼ <AREA SHAPE=RECT COORDS=“5,5,45,45” HREF=“myDoc1”>

◼ <AREA SHAPE=RECT COORDS=“105,105,195,195” 
HREF=“myDoc2>

◼ </MAP>



Defining the Map (con’t)

◼ For the rectangular area, use the x,y
coordinates of the top left point followed by 
the x,y coordinates of the lower right point

◼ You can also define circle areas using the x,y
of the center followed by the radius:
◼ <AREA SHAPE=CIRCLE COORDS=50,50,30” 

HREF=“myDoc3”>

◼ You can also define polygons by giving a list 
of x,y pairs:
◼ <AREA SHAPE=POLY 

COORDS=“0,100,0,50,100,100” 
HREF=“myDoc4”>



Map Layout

◼You can lay out the map areas 

manually

◼Or there are commercial products 

which you download or execute 

over the Internet that allow you to 

visually define the image map
◼ www.image-maps.com



www.image-maps.com

http://www.image-maps.com/


http://facstaff.cbu.edu/dbrandon/usa_image/usa_dealers.htm

http://facstaff.cbu.edu/dbrandon/usa_image/usa_dealers.htm


In Line Frames

◼You can create “in line” frames in a 

similar manner as setting up images:

◼ <iframe src=“myPage.htm" width="300" 

height="300" align="right"></iframe>

◼You can also give the frame a name 

and then use that name as a target to 

dynamically change the content of the 

frame (via JavaScript)



Lab 10

◼ Add an inline frame to you page



“Don’t let me be framed”

◼ <script>

◼ if (frames) {

◼ if (top.frames.length>0)

▪ top.location.href=self.location;

◼ }

◼ </script>

◼ JavaScript later in course



XMP
[deprecated]

◼ <XMP> indicates a block of text where all HTML 

tags are ignored. The only tag that is not 

ignored is the ending tag </XMP>:
◼ Here's how to do an anchor:

◼ <XMP> <A HREF="http://www.idocs.com">Cool Dude</A> 

</XMP>

◼ Produces
◼ Here's how to do an anchor:

◼ <A HREF="http://www.idocs.com">Cool Dude</A>

◼ Another way to do this is:
◼ Text in a <pre> element is displayed in a fixed-width font (usually Courier), and 

it preserves both spaces and line breaks

◼ <PRE> &#60;A HREF="http://www.idocs.com"&#62;Cool Dude&#60;/A&#62; 

</PRE>



HTML Information

◼ There is a “META” tag available to indicate 
certain key information about your page

◼ There are two types of META tags
◼ HTTP-EQUIV

◼ NAME attribute tags

◼ The HTTP-EQUIV tags control the actions of the 
browser

◼ The NAME meta tag takes NAME and CONTENT 
arguments
◼ The NAME argument is a code for the type of information in the 

CONTENT argument 

◼ These tags should go just before your BODY tag in 
between the <HEAD> and </HEAD> tags



HTML Information (con’t)

◼ There are several options for NAME, but one 

purpose of META is to help search engines find 

out about your page:
◼ <META NAME= “Author“ CONTENTS=“John Doe“>

◼ <META NAME= “Keywords“ CONTENTS=“college, training, 

computer, information technology“>

◼ Other NAMEs include date, generator, 

authoring.tool, description, etc.

◼ Some of these names are only used in 

proprietary authoring software or other 

applications such as Microsoft SharePoint or 

Microsoft Word



HTTP-EQUIV

◼ There are many of these other META capabilities

◼ They can control how and when your web pages are 
viewed including refresh rates, caching, slide shows, 
framing, setting cookies, rating content for violence, 
language, sex, nudity, etc.

◼ They can also override the normal server “content type” of 
ISO-8859-1 (Western, Latin-1):
◼ <META HTTP-EQUIV=“Content-Type” CONTENT=“text/html”; 

CHARSET=ISO-8859-5>

◼ This changes character set to Cyrillic

◼ HTTP-EQUIV=“Content-Script-Type”
◼ Sets default scripting language (later in course)

◼ HTTP-EQUIV=“Content-Style-Type”
◼ Sets default stylesheet (later in course)

◼ HTTP-EQUIV=“Content-Language”
◼ Sets the default natural language (later in course)



“Validating an HTML 5 Page”

◼ W3C provides a validation service for HTML:

◼ http://validator.w3.org/



Protecting Your Site

◼ You may wish to protect your web site in 
several ways:

◼ Keep images from being downloaded and 
saved

◼ Keep source code (html & javascript) from 
being viewed or copied

◼ Protect e-mail links so spammers can’t get 
them with scanner programs

◼ Protect all links so that scanners like Teleport 
or Webzip cannot store your website

Note: do not use any of these for your work in this class !!!



Protecting Your Site (con’t)

◼ To disable local caching:
◼ <meta http-equiv='pragma' content='no-cache'>

◼ <meta http-equiv='expires' content='-1'>

◼ <meta name='revisit-after' content='1 days'>

◼ To disable robots indexing:
◼ <meta name='robots' content='noindex'>

◼ To disable frames:

◼ <script>if(frames){if(top.frames.length>0)top.location

.href=self.location;}</script>



Disable Right Click

(see JavaScript later in course)

◼ <SCRIPT language="JavaScript">

◼ function clickIE() {

◼ if (document.all) {alert("Copyright Source Code");return false;}

◼ }

◼ function clickNS(e) {

◼ if (document.layers||(document.getElementById&&!document.all))

◼ {if (e.which==2||e.which==3) {alert("Copyright Source Code");return 
false;}}

◼ }

◼ if (document.layers) {

◼ document.captureEvents(Event.MOUSEDOWN);document.onmousedown=clickNS;

◼ }

◼ else {

◼ document.onmouseup=clickNS;document.oncontextmenu=clickIE;

◼ }

◼ document.oncontextmenu=new Function("return false")

◼ </SCRIPT>



Protecting Your HTML

[encryption]



Protecting Your HTML (con’t)



Protecting Your HTML (con’t)



Protecting Your HTML (con’t)



Posting Your Home Page

◼ Create a home page document in HTML using a 
general local text  editor (or a specific HTML editor). 
Save the file with the extension “.htm” or “.html” (as a 
text file)

◼ View that HTML document in your browser (ie browser 
“open file”); go back to step one and revise as 
necessary

◼ If necessary: log onto CBU Server (Telnet) and create 
a subdirectory below your home directory called WWW

◼ If necessary, change its attributes to let everyone read 
it (chmod a+rx WWW); make sure your home directory 
has the execute permission set also:

chmod 711 /home/stu1/jdoe



Posting a Home Page (con’t)

◼Copy the home page (all pages and images 
used) to CBU Server (via FTP or WinSCP)

◼Name the home page Welcome.html (or 
index.html), put it in that WWW 
subdirectory, and, if necessary, change its 
attributes so that anyone can read it 
(“chmod a+r Welcome.html” or “chmod 755 
Welcome.html”)

◼ Your URL will be: stu.cbu.edu/~jdoe

◼ See: https://www.cbu.edu/it-services

https://www.cbu.edu/it-services


WinSCP (free download)
[http://winscp.net/eng/download.php]

Loaded on CBU lab computers !



Posting a Home Page (con’t)

◼ Unix directories and files have three rights in regards to 

three entities: the owner, groups, everyone else

◼ Check that the rights/properties are set properly for your 

Sheba WWW directly (as well as all the files inside of the 

WWW directory) as shown below (rwxrwxrwx, octal 777) 

or 755

◼ For a directory (folder), the three permissions/properties 

(r,w,x) are: view, create/delete, enter/run

◼ For a file, the three permissions/properties are: read, 

write, execute



Posting a Home Page (con’t)

◼Files inside of WWW directory should 

also be set to 777, 755, or 644 (rw-r--r--) 

for read only property

◼ If they are correct and you still get an error 

viewing your page in a browser, go to the 

CBU ITS Help desk as there  may be a 

problem with the way your account is set up
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Posting a Home Page (con’t)

◼ In WinSCP, one can change directory or file 

properties/permissions:



Posting a Home Page (con’t)

◼ Setting permission for a file inside WWW 

folder:



Posting a Home Page (con’t)

◼ One can also set permissions via the command line via chmod

◼ chmod {a,u,g,o} {+,-} {r,w,x} files

The plus ("+") sign indicates give permission. The minus ("-") sign indicates 

remove permission.

◼ Permission examples:

• chmod a+r files are readable by all

• chmod a-r files cancels the ability for all to read the file

• chmod a-rwx cancels all access for all

• chmod g+rw files give the group read and write permission

• chmod u+rwx files give the owner all permissions

• chmod og+rw files give the world and the group read and write permission

◼ : For example, If you want all people to read the home page of your Web 

site (the files which reside in your public_html directory), but do not want to 

give permission for viewers to alter your files, you would type:

◼ chmod a+r index.html

Copyright Dan Brandon, PhD, PMP
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Posting a Home Page (con’t)

◼ Home directory permissions

◼ Now on the student server (sheba),  the student’s home directory 

permissions have to be set to 755 in order to see their web page 

(not get a "forbidden" error)

◼ This may or may not have been done when your account was first 

created

◼ This is in addition to the 755 permissions on the WWW directory 

and all files and folders inside of it (that can be done with 

WinSCP)

◼ Setting the home directory permissions cannot be done in 

WinSCP because one can’t back out of their home directory (go 

up the directory tree) to change it

◼ One can use the PuTTy program to log onto your account on 

sheba and issue uxix/linux commands

◼ PuTTy is a program that is loaded onto the CBU computers, and it 

is free to install on your own device



Posting a Home Page (con’t)

◼ When PuTTY is started you specify the target 

server as sheba.cbu.edu

◼ Then you enter your CBU username and 

password, and now you are ready to enter uxix

commands

◼ You can check permissions on the home directory 

with the command:
◼ ls -ld

◼ You should see
◼ drwxr-xr-x

◼ Which is 755; If not, you can set permissions 

correctly with the command:
◼ chmod 755 ~



Posting a Home Page (con’t)
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Getting Your Page “Noticed”

◼ Use “META” HTML tags to describe the 
content of a document within the <HEAD> 
area, so that search engines can readily get 
that information

◼ META uses name/value pairs

◼ Typical names are: Author, Keywords, 
Generator, Classification, Description

◼ Examples:

◼ <META name=“Author” content=“John Doe”>

◼ <META name=“Keywords” content=“lady’s man, 
stud, buff, cool, bad”>



Getting Your Page “Noticed” (con’t)

◼ List keywords in META tag in order of 
importance; keywords should be in lower case; 
set the language if necessary

◼ Use both plural and singular forms if appropriate

◼ Quickly describe your site in the text, and use 
some “keywords” (do not use keywords more 
than five times on a page)

◼ Put your keywords in the TITLE tag also

◼ Also use the NAME=“DESCRIPTION” capability 
to give a concise description of your web site 
(under 200 characters)



Getting Your Page “Noticed” (con’t)

◼ Register your  domain name with NIC 
(http://www.internic.net/)

◼ Pick a great domain name; available names 
can be found via NIC search; some names 
taken now are for sale (see online brokers)

◼ Title your pages descriptively

◼ Limit pages searched, if necessary, by using 
a robots.txt file in your web directory

◼ Use a hosting service, such as GoDaddy, 
which will also register your domain name

http://www.internic.net/


www.internic.net



www.godaddy.com



Getting Your Page “Noticed” (con’t)

◼ Register directly with search engines that 
provide this capability and adhere to their 
catalog requirements (ie Yahoo & Inktomi)

◼ Also follow the “How to include Your Site”  or 
“Add URL” link found on many search engines

◼ There are submission services that will do this 
for you (www.submit-it.com, 
www.netcreations.com/postmaster, 
www.register-it.com) and other sites that lists all 
registration forms (www.freelinks.com)

◼ Some charge a fee, and some are free 
(selfpromotion.com, www.addme.com)

http://www.freelinks.com/


Getting Your Page “Noticed” (con’t)

◼Make sure each of your pages has a link 
back to your home page

◼Add your URL to your letterhead, business 
cards, and all company materials

◼ Include your URL in all your e-mail 
correspondence (i.e. with a sig file)

◼Send out a press release to traditional 
media

◼Cross link to other sites, and get customers 
and vendors to link to you





Attention Grabbing Techniques for Visitors

◼Give something away “free”

◼Automate e-mail with a “mailto” tag

◼Use a guestbook to solicit contact info

◼Embellish forms with drop downs and 
buttons

◼Use multimedia effectively (ie HTML5 
multimedia, RealAudio, Shockwave, 
Flash, or Java), discussed later in 
course



Search Engine Optimization (SEO)



References



Project 1
◼ Design and build your own personal home page with 

multiple sections

◼ Requirements:

◼ Multiple sections with internal links to them

◼ Your photo

◼ At least one list

◼ Table

◼ External links (text or graphic)

◼ Colors

◼ Form (with echo)

◼ Image map and/or inline frame 

◼ You can use either your version with or without CSS 

layouts
◼ Pure HTML, no special plug-ins, viewers, or web page 

builder apps in this assignment



Example Student Project 1

Form

Table

Links

Photo

Image

Links

Links to

Homework

Inline

Frame

List



Homework

◼Textbook Chapter  7

◼Project 1 Completion

◼ Including posting to student server

◼Email URL to instructor

◼Appendix – SSL (https)

◼Appendix - frames



Web Security

◼ We pass a tremendous amount of sensitive information back and forth via the 

internet, VPN's (Virtual Private Networks), LAN's (Local Area Networks), etc. every 

day

◼ What is to stop hackers and thieves from tapping in to that sensitive information 

and using it to their own gain?

◼ Most important is SSL (Secured Socket Layer)

◼ In these days of information there are a great number of reasons web designers 

and developers use secured pages: 

◼ Protect user identities and passwords

◼ Protect credit card transactions and other sensitive information during online consumer 

purchases

◼ Allows users to safely view personal and business financial information

◼ Secure the transmissions of other sensitive personal information like your social security 

number

◼ Keep secret sensitive corporate information being passed between branches, divisions, 

etc.

◼ Granted, there are many more reasons you may come across a need for security 

but the short list above gives you some of the highlights

◼ Without the ability for encryption many of the online resources we take for granted 

today would not be possible



SSL Process

◼ First: A client (that's the browser) requests a SSL connection with the 

server

◼ Second: The server sends a Certificate (more on that later)

◼ Third: The client validates the Certificate, creates a session key and 

encrypts the key, and sends it back to the server

◼ Fourth: The server decrypts the session key and establishes the encrypted 

connection

◼ However, you have yet to send any real information

◼ All you have right now is an established connection

◼ The Certificate that the server sent out is what makes this whole process 

work

◼ A Certificate is obtained from a Certificate Authority, which is sort of like a 

notary public that verifies the Certificates authenticity

◼ The Certificate contains the common name of the server, making it 

impossible to use on other servers

◼ It also uses keys, a public and private key, to create and verify a secured 

connection



SSL Setup

◼ The first is to do is to set up SSL on your own server

◼ Most of you are probably not running your own web server so 

we’ll cover just the highlights

◼ In order to set it up you would need a server running Apache or 

IIS (Internet Information Services) and be familiar enough with 

servers and network configurations to set it up

◼ Next you need a Certificate,  which you can get from a certificate 

authority like VeriSign (or you can even create a Certificate 

yourself)

◼ Once you have the pieces put together it's really as simple as 

creating a folder in your web where all of your secured pages 

are stored and routing all references to your secured pages 

through your secured server

◼ Or you could use the secured server that your web host has 

already set up



SSL (con’t)

◼ Most web hosts already have a secured server set up and ready to use

◼ These are referred to as Shared Secure Servers or Shared SSL since the 

server takes care of security for several different webs

◼ If your site is hosted by a provider, odds are you have this service available to 

you at no additional charge

◼ If your site is being hosted for free (like on a personal web server with your ISP) 

you will probably not have a secured server available to you and if you do you 

can probably expect to pay for it

◼ As a general rule, the free hosting services don't come with the bells and 

whistles like Shared SSL

◼ Simply contact your provider and see if you have the service available to you

◼ They will create a special folder within your web for your secured pages

◼ They should also provide you with a URL reference that routes through their 

secured server to your secured folder; the URL should look something like this: 

https://www.WebHostSecure.com/YourWeb/YourFolder/YourPage.html

◼ Be sure that the URL reads https; that "s" on the end is what designates the link 

as secured



SSL (con’t)

◼ Why wouldn't you just want to secure every page that you create 

as a matter of practice?

◼ Well, there's one simple and very good reason → Speed

◼ When you use the encryption capabilities every bit of information 

sent back and forth is encrypted and decrypted

◼ That includes graphics, photographs, text, data, etc. and it can 

create quite a drag on both upload and download time

◼ If you encrypted everything, your visitors would probably become 

very impatient with your site and surf off somewhere else

◼ A good rule of thumb is to only use encryption when absolutely 

necessary and consolidate your encryption needs in to as few 

pages as possible

◼ This should give you some good working knowledge of SSL and 

encryption; for most of you it will be as simple as emailing your 

host and having SSL set up for your web



Frames - Deprecated

◼ Your browser window can be divided into 

separate “frames” each of which can show 

separate HTML documents

◼ You can have links in one HTML document to 

control which  HTML document shows in 

another frame (or even control which HTML 

document shows in a separate browser 

window)



Frames (con’t)

◼ Browser windows can be split up either 

horizontally or vertically

◼ Frames can be nested, so that a window 

divided can be further divided

◼ HTML documents are either:

◼ “frameset” documents

◼ content or “body” documents

◼ For nested frames there can be one or 

several frameset documents



Frames (con’t)

◼ Two vertical frames:

◼ <html>

◼ <head><title>...</title></head>

◼ <frameset cols=“*,*”>

◼ <frame src=“x.html” name=“left”>

◼ <frame src=“y.html” name=“right”>

◼ </frameset>

◼ </html>

◼ You can give the frames names like we have 

done here with “left” and “right”; then they can 

be referenced in other frames



Frames (con’t)

◼Two horizontal frames:

◼ <html>

◼ <head><title>...</title></head>

◼ <frameset rows=“*,*”>

◼ <frame src=“x.html” name=“top”>

◼ <frame src=“y.html” name=“bottom”>

◼ </frameset>

◼ </html>



Sizing Frames

◼ Dividing into rows:

◼ <frameset rows=“s1,s2,s3....”

◼ Dividing into columns:

◼ <frameset cols=“s1,s2,s3....”

◼ The sizes (s1...sn) can be:

◼ *  (divide up evenly)

◼ absolute number - pixels (ie 300)

◼ percent (ie 30%)

◼ relative number (ie 2*, means twice as big as 

others)



Nesting Frames - Directly

◼ <frameset rows=“*,*”>

◼ <frame src=“x.htm”>

◼ <frameset cols =“*,*”>

◼ <frame src =“y.htm”>

◼ <frame src =“z.htm”>

◼ </frameset>

◼ </frameset>



Nesting Frames - Indirectly               
[can give frameset as name]

◼ <frameset rows=“*,*”>

◼ <frame src=“x.htm”>

◼ <frame src=“yz.htm”        
name = “bottom”>

◼ </frameset>

◼ Document yz.htm:

◼ <frameset cols=“*,*”>

◼ <frame src=“y.htm”>

◼ <frame src=“z.htm”>



Targeting Frames

◼ Use “target” keyword in “a href” tag:
◼ <a href=mydoc.html target=“bottom”>...</a>

◼ Targets may be:
◼ HTML documents named in a “name” within the 

“frame” tag

◼ _self                      (this document)

◼ _parent                  (parent document)

◼ _top                       (update entire window)

◼ _blank                    (open new browser window)
◼ Use of any other “name” not specified in a “frame” tag will open 

a new browser window, and give that window a “name” !



Other Arguments

◼ <FRAMESET FRAMEBORDER=“yes|no” …>

◼ <FRAMESET BORDERCOLOR=“$$$$$$” 

…>

◼ <FRAME FRAMEBORDER=“yes|no” …>

◼ <FRAME BORDERCOLOR=“$$$$$$” …>

◼ <FRAME NORESIZE …>

◼ <FRAME SCROLLING=“yes|no|auto” …>

◼ <FRAME MARGINWIDTH=$$ …>

◼ <FRAME MARGINHEIGHT=$$ …>
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