
Internet Programming

Forms and Advanced HTML

Dan Brandon, Ph.D., PMP

1Copyright Dan Brandon, PhD, PMP

Forms
◼ A “form” is a group of data capturing widgets

(controls) placed on an HTML page

◼ The form typically communicates the information
(the user enters into the widgets) over the
communication link to the Internet server via
HTTP protocol encoded in a certain way
(URLEncoded)

◼ Part of that HTTP protocol is the designation of a
server side program which processes the form
information; that program (in C/C++/Perl) is often
called a CGI (Common Gateway Interface) script
or server page (in PHP, ASP, etc.)

Forms (con’t)

Copyright Dan Brandon, PhD, PMP

3

Forms (con’t)

◼ Forms start with a <form> tag and end with </form>

◼ Within the <form> tag arguments are needed for the
method of data transfer (post or get) to the server
program (method=) and the name of the server program
(action=):

◼ <form method=“post” action=“...path of server
program”>

◼ For the form data to be routed to the mail server, the
ACTION is “mail to: jdoe@mail.cbu.edu”

Forms (con’t)

◼ There are several widgets that can be placed on the

form such as text fields, text areas (multi line), radio

buttons, check boxes, selection lists, submit buttons, and

reset buttons

◼ For text fields, submit buttons, reset buttons, and radio

buttons, you use the INPUT tag

◼ For text fields, the INPUT tag has arguments for Type

(“text”), Size, ID, and Name:

◼ <input type=“text” size=15 name=“City”>

◼ The ‘name’ above does not show on the web page, it is

used to identify the keyed-in info when it is sent to the

server

Forms (con’t)

◼ For buttons, the INPUT tag has arguments for
Type, Name, and Value

◼ For radio buttons, use the same name:
◼ <input type=“radio” name=“paytype” value=“cash”>

◼ <input type=“radio” name=“paytype” value=“check”>

◼ <input type=“radio” name=“paytype” value=“credit”>

◼ By default, submit buttons send the form data
to the server, reset buttons clear the data
◼ <input type=“submit” name=“submit” value=“submit”>

◼ <input type=“reset” name=“reset” value=“reset”>

INPUT Types

Copyright Dan Brandon, PhD, PMP

7

INPUT Types (con’t)

Copyright Dan Brandon, PhD, PMP

8

Sample Form

◼ <hr> Please enter the following customer data:

◼ <form method=“post” action=“...path of cgi script”>

◼ Name:<input type=“text” size=30
name=“cust_name”>

◼ City:<input type=“text” size=15 name=“cust_city”>

◼ State:<input type=“text” size=2 name=“cust_state”>

◼

◼ <input type=“submit” name=“submit” value=“submit”>

◼ <input type=“reset” name=“reset” value=“reset”>

◼ </form><hr>

Data Transfer Methods

◼ Both the GET and POST method is used to

transfer data from client to server in HTTP protocol

◼ The main difference between POST and GET

method is that GET carries request parameter

appended in URL string while POST carries

request parameter in message body

◼ POST is a more secure way of transferring data

from a client but less efficient (for short strings)

◼ There is also the optional enctype attribute which

specifies how the form data should be encoded as

it is sent to the server

Encoding Type

Copyright Dan Brandon, PhD, PMP

11

Tab Order and Access keys

◼ Form fields can also be assigned a “tab order”, “access

key” via “label”/“id”

◼ <label for=“ln” accesskey=“L”>

◼ Last Name:

◼ </label>

◼ <input id=“ln” name=“lastname” type=“text” tabindex=“1”>

◼ There is also a “button” tag for making your own buttons

and including images

◼ Uploading Files (type=file):

◼ Subject Photo (Local File Path):<input type="file" name="sPhoto"

size="40" maxlenght="60">

◼ <html><head><title>Sample Form</title></head>

◼ <body">

◼ <h1 align=center>sample form</h1>

◼ <p>

◼ <hr>Please enter the following info:

◼ <form method="post" action="http://www.cbu.edu/~dbrandon/echo.php">

◼ <label for="name" accesskey="n">

◼ Name: <input tabindex="1" id="name" type="text" size=30 name="name">

◼ </label>

◼ <label for="city" accesskey="c">

◼ City: <input tabindex="2" id="city" type="text" size=15 name="city">

◼ </label>

◼ <label for="state" accesskey="s">

◼ State: <input tabindex="3" id="state" type="text" size=2 name="state">

◼ </label>

◼

◼

◼ <button name="submit" type="submit"><img src="satisfied.gif" height=50 width=50
alt="submit it!"></button>

◼

◼ <button name="reset" type="reset"><img src="ohhno.gif" height=50 width=50 alt="reset
it!"></button>

◼ </form>

◼ </body>

◼ </html>

Forms (con’t)

Form Position and Layout

◼ A form element can be placed anywhere within

the body of a page

◼ Forms can contain page elements such as

tables, paragraphs, inline images, and headings

◼ Forms can be laid out using a table(s) or CSS,
and this is a common way to design a web form

◼ To really do anything significant with HTML
forms you have to write the program on the
server that will process the data from the form
such as updating a database, querying a
database, etc.

http://www.youtube.com/watch?v=NPGCn9P3Lh8

Common Layouts

Copyright Dan Brandon, PhD, PMP

16

Field Sets

◼ A Field set is a group of widgets that share a

common purpose

◼ Field sets are created using the fieldset

element

<fieldset id=“id”>

content

</fieldset>

where id identifies the field set and content

is the form content within the field set

Copyright Dan Brandon, PhD, PMP

17

Field Sets (con’t)

◼ A legend describes the content of a field set
using the legend element

<legend>text</legend>

where text is the text of the legend

◼ The legend element contains only text and

no nested elements

◼ By default, legends are placed in the top-left

corner of the field set box and can be moved

to a different location using the CSS

positioning styles

Copyright Dan Brandon, PhD, PMP

18

Field Sets (con’t)

Copyright Dan Brandon, PhD, PMP

19

Field Sets and INPUT Widgets

Copyright Dan Brandon, PhD, PMP

20

Legend and Labels

Copyright Dan Brandon, PhD, PMP

21

Default Values

Copyright Dan Brandon, PhD, PMP

22

Placeholders

Copyright Dan Brandon, PhD, PMP

23

Example Placeholders and Default

Values

Copyright Dan Brandon, PhD, PMP

24

Testing Forms
[ACTION="http://www.danbrandon.com/echo.php">]

Echo site: http://www.danbrandon.com/echo.php

Lab 9

◼ Add a simple form, and use the “echo site” (on

an earlier slide) to test out your form

Selection List

◼ A selection list is a list box that presents users

with a group of possible values for the data field

◼ The list is created with the select and option
<select name=”name”>

<option value=”value1”>text1</option>

<option value=”value2”>text2</option>

...

</select>

◼ Where
◼ value1, value2,… are the possible field values

◼ text1, text2,… are the text of the entries in the selection

list that users see on the web form

Copyright Dan Brandon, PhD, PMP

27

Selection List (con’t)

Copyright Dan Brandon, PhD, PMP

28

Selection List (con’t)

◼ By default, a selection list appears as a drop-down list

◼ To display a selection list as a scroll box, use the size

attribute to the select element:

<select size=“value”> ... </select>

where value is the number of options that the selection

list displays at one time

◼ By default, selection lists allow only one selection from

the list of options

◼ To allow more than one item to be selected, add the
multiple attribute

<select multiple> ... </select>

Copyright Dan Brandon, PhD, PMP

29

Selection List (con’t)

◼ Two ways for users to select multiple items

◼ For non-contiguous selection, press and hold the Ctrl

key while making the selections

◼ For contiguous selection, select the first item, hold the

Shift key, and then select the last item in the range

◼ Organize selection list options by placing them in option
groups using the optgroup element
<select>

<optgroup label=”label1”>

<option>text1</option>

<option>text2</option>

</optgroup>

</select>

Copyright Dan Brandon, PhD, PMP

30

SELECT and Option Group

Copyright Dan Brandon, PhD, PMP

31

Radio (option) Buttons

◼ Unlike selection lists, the options appear as separate

controls in the web form

◼ They are created with a group of input elements with a

type attribute value of “radio”

<input name=“name” value=“value1” type=“radio” />

<input name=“name” value=“value2” type=“radio” />

…

where value1, value2, … are the field values associated with each

◼ Set an option button to be selected as the default by
adding the checked attribute to the input element

<input name=”name” type=”radio” checked />

Copyright Dan Brandon, PhD, PMP

32

Radio Buttons (con’t)

Copyright Dan Brandon, PhD, PMP

33

Check Boxes

◼Check boxes are designed for fields that

record the presence or absence of an

something

◼They are created using the input element

with the type attribute set to “checkbox”
<input name=“name” value=“value”

type=“checkbox” />

where value attribute contains the value of the
field when the check box is checked and type

attribute indicates a check box

Copyright Dan Brandon, PhD, PMP

34

Check Box (con’t)

Copyright Dan Brandon, PhD, PMP

35

Text Area

◼ Text area is created using the textarea element

<textarea name=“name”>

text

</textarea>

where text is the default value of the data field

• HTML supports the rows and cols attributes to set size

<textarea rows=”value” cols=”value”>

...

</textarea>

Where the rows attribute specifies the number of lines

in the text area box and the cols attribute specifies the

number of characters per line
Copyright Dan Brandon, PhD, PMP

36

Text Area (con’t)

Copyright Dan Brandon, PhD, PMP

37

DataList Suggestions

◼ A data list can be used to “suggest” some

possible input:

Copyright Dan Brandon, PhD, PMP

38

Hidden Fields

◼ Hidden fields do not appear in the browser, but

let the web page send information to the server

◼ <INPUT type=“hidden” name=“xxx” value=“zzz”>

◼ Hidden fields let web developers include data

that cannot be seen or modified by users when a

form is submitted

◼ Hidden fields were used to maintain state

between pages such as session info, login info,

or storing what database record that needs to be

updated when the form is submitted; server

languages such as PHP provide better ways now

HTML 5 Extensions for Forms

◼ HTML 5 provides new types of form controls which may

provide both error checking and/or entry aids such as

“pickers”:
◼ range (exact number not important)

◼ number

◼ telephone number

◼ color

◼ date, time, datetime (UTC), datetime-local, month, week

◼ email

◼ image

◼ search

◼ url

◼ password

◼ New attributes and functions are also available

HTML5 Forms (con’t)

Copyright Dan Brandon, PhD, PMP

41

Time/Date Fields

◼ Indicated using type attributes:

◼ date

◼ time

◼ datetime-local

◼ month

◼ week

Copyright Dan Brandon, PhD, PMP

42

Spinner

◼ Spinner control: Displays an up or down arrow

to increase or decrease the field value by a set

amount

◼ To create a spinner control, apply the input

element using the number data type

Copyright Dan Brandon, PhD, PMP

43

Slider

◼ Slider control: Limits a numeric field to a

range of possible values

◼ To create a slider control, apply the range data
type in the input element

Copyright Dan Brandon, PhD, PMP

44

Example HTML5 Form

Example HTML5 Form
[showing email validation]

Example HTML5 Form
[showing “date picker”]

Example HTML 5 Form Code
◼ <!DOCTYPE html>

◼ <html>

◼ <head>

◼ <meta charset="utf-8">

◼ <title>Example HTML5 Form</title>

◼ </head>

◼ <body>

◼ <h1 style="text-align:center">Example HTML5 Form</h1>

◼ <form method="post" action="echo.php">

◼ <table align="left">

◼ <tr>

◼ <td>Last Name:</td><td><input name="lname' placeholder="Enter your last name" autofocus></td>

◼ </tr>

◼ <tr>

◼ <td>First Name:</td><td><input name="fname' placeholder="Enter your first name"></td>

◼ </tr>

◼ <tr>

◼ <td>Email:</td><td><input type="email" name="email' placeholder="Enter your email address"></td>

◼ </tr>

◼ <tr>

◼ <td>Tele:</td><td><input type="tel" name="tele' placeholder="Enter your telephone number"></td>

◼ </tr>

◼ <tr>

◼ <td>Weight:</td><td><input type="range" min="50" max="1000" step="10" value="170" name="weight" placeholder="Enter your

weight in pounds"></td>

◼ </tr>

◼ <tr>

◼ <td>Height:</td><td><input type="number" min="36" max="96" step="2" value="72" name="height" placeholder="Enter your weight

in pounds"></td>

◼ </tr>

◼ <tr>

◼ <td>Birthdate:</td><td><input type="date" name="bdate' placeholder="Enter your birthdate"></td>

◼ </tr>

◼ <tr>

◼ <td>Birthtime:</td><td><input type="time" name="btime' placeholder="Enter your birth time (24 hour)"></td>

◼ </tr>

◼ <tr>

◼ <td>Website:</td><td><input type="url" name="web' placeholder="Enter your web site"></td>

◼ </tr>

◼ <tr>

◼ <td>Eye Color:</td><td><input type="color" name="ecolor' placeholder="Enter your eye color"></td>

◼ </tr>

◼ </table>

◼ <br clear="all">

◼ <input type="submit" value="SUBMIT">

◼ <input type="reset" value ="RESET">

◼ </form>

◼ </body>

◼ </html>

Pattern Attribute

◼ If none of these new input types suits your

needs, HTML 5 provides the pattern attribute for

input elements with type="text“

◼ The value of the pattern attribute is a regular

expression, as defined in ECMAScript and used

in JavaScript (discussed later in this course)

◼ For example, if one wanted to match a five-digit

or nine-digit US ZIP code or a six-character

Canadian postal code, one could use this

pattern:

◼ ([0-9]{5}(-[0-9]{4})?)|([A-Z][0-9][A-Z]\s+[0-9][A-Z][0-9])

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf

Pattern Attribute (con’t)

◼<input type=“text” name=“postCode”

required=“required”

◼ pattern=“([0-9]{5}(-[0-9]{4})?)|([0-9][A-

Z][0-9]\s+[A-Z][0-9][A-Z])”

◼ title=“US: 99999-1234; Canadian:

0A1 B2C” />

Form Validation

◼ Validation: Process of ensuring that a user

has supplied valid data

◼ Types of validation

◼ Server-side validation – validation occurs on

the web server

◼ Client-side validation – validation occurs in

the user’s browser

◼ Client-side validation is preferred where

possible

Copyright Dan Brandon, PhD, PMP

51

Validation (con’t)

◼The first validation test is to verify if data

is supplied for all the required data fields

◼Add the required attribute to the control

to identify the required data fields

◼ If a required field is left blank, the

browser will not submit the form returning

an error message to indicate the

unavailability of data

Copyright Dan Brandon, PhD, PMP

52

Validation (con’t)

◼ The syntax to define the maxlength attribute

is <input maxlength=“value” />

where value is the maximum number of

characters in the field value

◼ Example:

<input name=”custZip” maxlength=“5”

/>

• The maxlength attribute does not

distinguish between characters and

digits
Copyright Dan Brandon, PhD, PMP

53

Validation (con’t)

◼ A form fails the built-in validation test if the data

values entered into a field do not match the

field type

◼ Example:

◼ A data field with the number type will be rejected if

nonnumeric data is entered

◼ Fields with email and url types will be rejected if a

user provides an invalid e-mail address or text that

does not match the format of a URL

◼ To go beyond built-in validation, one needs to use

JavaScript which is covered later in the course

Copyright Dan Brandon, PhD, PMP

54

Validation (con’t)

◼ Inline validation: The technique of

immediate data validation and reporting

of errors

◼The focus pseudo-class is used to

change the display style of fields that

currently contain invalid data

◼ Focus: The state in which an element has

been clicked by the user, making it the

active control on the form

Copyright Dan Brandon, PhD, PMP

55

Validation (con’t)

Copyright Dan Brandon, PhD, PMP

56

Validation (con’t)

◼ Example: To create styles for all of the

checked option buttons in the form, apply the
checked pseudo-class

input[type=”radio”]:checked {

styles

}

where styles are the CSS styles applied to

checked option buttons

Copyright Dan Brandon, PhD, PMP

57

Validation (con’t)

◼ The valid and invalid pseudo-classes are

used to format controls based on whether

their field values pass/fail a validation test

◼ Example: To display input elements

containing valid data with a light green

background, use the following style rule:

input:valid {

background-color: rgb(220, 255,

220);

}

Copyright Dan Brandon, PhD, PMP

58

Validation (con’t)

◼ Example: To display input elements

containing invalid data with a light red

background with focus, use the following style

rule:

input:focus:invalid {

background-color: rgb(255, 232,

233);

}

Copyright Dan Brandon, PhD, PMP

59

Validation (con’t)

Copyright Dan Brandon, PhD, PMP

60

Image Maps

◼ Image maps allow you to associate links with
portions of an image

◼ To associate an image with a map, simply set

the property ‘USEMAP” to the name of the

image map:

◼

◼ myMap works like the label for intrapage links

– the imagemap img link must match a MAP

tag

Defining the Map

◼ The map identifies areas within the image using
relative pixel coordinates

◼ The relative coordinate systems has the origin
(0,0) at the top left of the image

◼ MAP and nested AREA tags are used:
◼ <MAP NAME=“myMap”>

◼ <AREA SHAPE=RECT COORDS=“5,5,45,45” HREF=“myDoc1”>

◼ <AREA SHAPE=RECT COORDS=“105,105,195,195”
HREF=“myDoc2>

◼ </MAP>

Defining the Map (con’t)

◼ For the rectangular area, use the x,y
coordinates of the top left point followed by
the x,y coordinates of the lower right point

◼ You can also define circle areas using the x,y
of the center followed by the radius:
◼ <AREA SHAPE=CIRCLE COORDS=50,50,30”

HREF=“myDoc3”>

◼ You can also define polygons by giving a list
of x,y pairs:
◼ <AREA SHAPE=POLY

COORDS=“0,100,0,50,100,100”
HREF=“myDoc4”>

Map Layout

◼You can lay out the map areas

manually

◼Or there are commercial products

which you download or execute

over the Internet that allow you to

visually define the image map
◼ www.image-maps.com

www.image-maps.com

http://www.image-maps.com/

http://facstaff.cbu.edu/dbrandon/usa_image/usa_dealers.htm

http://facstaff.cbu.edu/dbrandon/usa_image/usa_dealers.htm

In Line Frames

◼You can create “in line” frames in a

similar manner as setting up images:

◼ <iframe src=“myPage.htm" width="300"

height="300" align="right"></iframe>

◼You can also give the frame a name

and then use that name as a target to

dynamically change the content of the

frame (via JavaScript)

Lab 10

◼ Add an inline frame to you page

“Don’t let me be framed”

◼ <script>

◼ if (frames) {

◼ if (top.frames.length>0)

▪ top.location.href=self.location;

◼ }

◼ </script>

◼ JavaScript later in course

XMP
[deprecated]

◼ <XMP> indicates a block of text where all HTML

tags are ignored. The only tag that is not

ignored is the ending tag </XMP>:
◼ Here's how to do an anchor:

◼ <XMP> Cool Dude

</XMP>

◼ Produces
◼ Here's how to do an anchor:

◼ Cool Dude

◼ Another way to do this is:
◼ Text in a <pre> element is displayed in a fixed-width font (usually Courier), and

it preserves both spaces and line breaks

◼ <PRE> Cool Dude

</PRE>

HTML Information

◼ There is a “META” tag available to indicate
certain key information about your page

◼ There are two types of META tags
◼ HTTP-EQUIV

◼ NAME attribute tags

◼ The HTTP-EQUIV tags control the actions of the
browser

◼ The NAME meta tag takes NAME and CONTENT
arguments
◼ The NAME argument is a code for the type of information in the

CONTENT argument

◼ These tags should go just before your BODY tag in
between the <HEAD> and </HEAD> tags

HTML Information (con’t)

◼ There are several options for NAME, but one

purpose of META is to help search engines find

out about your page:
◼ <META NAME= “Author“ CONTENTS=“John Doe“>

◼ <META NAME= “Keywords“ CONTENTS=“college, training,

computer, information technology“>

◼ Other NAMEs include date, generator,

authoring.tool, description, etc.

◼ Some of these names are only used in

proprietary authoring software or other

applications such as Microsoft SharePoint or

Microsoft Word

HTTP-EQUIV

◼ There are many of these other META capabilities

◼ They can control how and when your web pages are
viewed including refresh rates, caching, slide shows,
framing, setting cookies, rating content for violence,
language, sex, nudity, etc.

◼ They can also override the normal server “content type” of
ISO-8859-1 (Western, Latin-1):
◼ <META HTTP-EQUIV=“Content-Type” CONTENT=“text/html”;

CHARSET=ISO-8859-5>

◼ This changes character set to Cyrillic

◼ HTTP-EQUIV=“Content-Script-Type”
◼ Sets default scripting language (later in course)

◼ HTTP-EQUIV=“Content-Style-Type”
◼ Sets default stylesheet (later in course)

◼ HTTP-EQUIV=“Content-Language”
◼ Sets the default natural language (later in course)

“Validating an HTML 5 Page”

◼ W3C provides a validation service for HTML:

◼ http://validator.w3.org/

Protecting Your Site

◼ You may wish to protect your web site in
several ways:

◼ Keep images from being downloaded and
saved

◼ Keep source code (html & javascript) from
being viewed or copied

◼ Protect e-mail links so spammers can’t get
them with scanner programs

◼ Protect all links so that scanners like Teleport
or Webzip cannot store your website

Note: do not use any of these for your work in this class !!!

Protecting Your Site (con’t)

◼ To disable local caching:
◼ <meta http-equiv='pragma' content='no-cache'>

◼ <meta http-equiv='expires' content='-1'>

◼ <meta name='revisit-after' content='1 days'>

◼ To disable robots indexing:
◼ <meta name='robots' content='noindex'>

◼ To disable frames:

◼ <script>if(frames){if(top.frames.length>0)top.location

.href=self.location;}</script>

Disable Right Click

(see JavaScript later in course)

◼ <SCRIPT language="JavaScript">

◼ function clickIE() {

◼ if (document.all) {alert("Copyright Source Code");return false;}

◼ }

◼ function clickNS(e) {

◼ if (document.layers||(document.getElementById&&!document.all))

◼ {if (e.which==2||e.which==3) {alert("Copyright Source Code");return
false;}}

◼ }

◼ if (document.layers) {

◼ document.captureEvents(Event.MOUSEDOWN);document.onmousedown=clickNS;

◼ }

◼ else {

◼ document.onmouseup=clickNS;document.oncontextmenu=clickIE;

◼ }

◼ document.oncontextmenu=new Function("return false")

◼ </SCRIPT>

Protecting Your HTML

[encryption]

Protecting Your HTML (con’t)

Protecting Your HTML (con’t)

Protecting Your HTML (con’t)

Posting Your Home Page

◼ Create a home page document in HTML using a
general local text editor (or a specific HTML editor).
Save the file with the extension “.htm” or “.html” (as a
text file)

◼ View that HTML document in your browser (ie browser
“open file”); go back to step one and revise as
necessary

◼ If necessary: log onto CBU Server (Telnet) and create
a subdirectory below your home directory called WWW

◼ If necessary, change its attributes to let everyone read
it (chmod a+rx WWW); make sure your home directory
has the execute permission set also:

chmod 711 /home/stu1/jdoe

Posting a Home Page (con’t)

◼Copy the home page (all pages and images
used) to CBU Server (via FTP or WinSCP)

◼Name the home page Welcome.html (or
index.html), put it in that WWW
subdirectory, and, if necessary, change its
attributes so that anyone can read it
(“chmod a+r Welcome.html” or “chmod 755
Welcome.html”)

◼ Your URL will be: stu.cbu.edu/~jdoe

◼ See: https://www.cbu.edu/it-services

https://www.cbu.edu/it-services

WinSCP (free download)
[http://winscp.net/eng/download.php]

Loaded on CBU lab computers !

Posting a Home Page (con’t)

◼ Unix directories and files have three rights in regards to

three entities: the owner, groups, everyone else

◼ Check that the rights/properties are set properly for your

Sheba WWW directly (as well as all the files inside of the

WWW directory) as shown below (rwxrwxrwx, octal 777)

or 755

◼ For a directory (folder), the three permissions/properties

(r,w,x) are: view, create/delete, enter/run

◼ For a file, the three permissions/properties are: read,

write, execute

Posting a Home Page (con’t)

◼Files inside of WWW directory should

also be set to 777, 755, or 644 (rw-r--r--)

for read only property

◼ If they are correct and you still get an error

viewing your page in a browser, go to the

CBU ITS Help desk as there may be a

problem with the way your account is set up

Copyright Dan Brandon, PhD, PMP

86

Posting a Home Page (con’t)

◼ In WinSCP, one can change directory or file

properties/permissions:

Posting a Home Page (con’t)

◼ Setting permission for a file inside WWW

folder:

Posting a Home Page (con’t)

◼ One can also set permissions via the command line via chmod

◼ chmod {a,u,g,o} {+,-} {r,w,x} files

The plus ("+") sign indicates give permission. The minus ("-") sign indicates

remove permission.

◼ Permission examples:

• chmod a+r files are readable by all

• chmod a-r files cancels the ability for all to read the file

• chmod a-rwx cancels all access for all

• chmod g+rw files give the group read and write permission

• chmod u+rwx files give the owner all permissions

• chmod og+rw files give the world and the group read and write permission

◼ : For example, If you want all people to read the home page of your Web

site (the files which reside in your public_html directory), but do not want to

give permission for viewers to alter your files, you would type:

◼ chmod a+r index.html

Copyright Dan Brandon, PhD, PMP

89

Posting a Home Page (con’t)

◼ Home directory permissions

◼ Now on the student server (sheba), the student’s home directory

permissions have to be set to 755 in order to see their web page

(not get a "forbidden" error)

◼ This may or may not have been done when your account was first

created

◼ This is in addition to the 755 permissions on the WWW directory

and all files and folders inside of it (that can be done with

WinSCP)

◼ Setting the home directory permissions cannot be done in

WinSCP because one can’t back out of their home directory (go

up the directory tree) to change it

◼ One can use the PuTTy program to log onto your account on

sheba and issue uxix/linux commands

◼ PuTTy is a program that is loaded onto the CBU computers, and it

is free to install on your own device

Posting a Home Page (con’t)

◼ When PuTTY is started you specify the target

server as sheba.cbu.edu

◼ Then you enter your CBU username and

password, and now you are ready to enter uxix

commands

◼ You can check permissions on the home directory

with the command:
◼ ls -ld

◼ You should see
◼ drwxr-xr-x

◼ Which is 755; If not, you can set permissions

correctly with the command:
◼ chmod 755 ~

Posting a Home Page (con’t)

Copyright Dan Brandon, PhD, PMP

92

https://www.cbu.edu/it-services

https://www.cbu.edu/it-services

Getting Your Page “Noticed”

◼ Use “META” HTML tags to describe the
content of a document within the <HEAD>
area, so that search engines can readily get
that information

◼ META uses name/value pairs

◼ Typical names are: Author, Keywords,
Generator, Classification, Description

◼ Examples:

◼ <META name=“Author” content=“John Doe”>

◼ <META name=“Keywords” content=“lady’s man,
stud, buff, cool, bad”>

Getting Your Page “Noticed” (con’t)

◼ List keywords in META tag in order of
importance; keywords should be in lower case;
set the language if necessary

◼ Use both plural and singular forms if appropriate

◼ Quickly describe your site in the text, and use
some “keywords” (do not use keywords more
than five times on a page)

◼ Put your keywords in the TITLE tag also

◼ Also use the NAME=“DESCRIPTION” capability
to give a concise description of your web site
(under 200 characters)

Getting Your Page “Noticed” (con’t)

◼ Register your domain name with NIC
(http://www.internic.net/)

◼ Pick a great domain name; available names
can be found via NIC search; some names
taken now are for sale (see online brokers)

◼ Title your pages descriptively

◼ Limit pages searched, if necessary, by using
a robots.txt file in your web directory

◼ Use a hosting service, such as GoDaddy,
which will also register your domain name

http://www.internic.net/

www.internic.net

www.godaddy.com

Getting Your Page “Noticed” (con’t)

◼ Register directly with search engines that
provide this capability and adhere to their
catalog requirements (ie Yahoo & Inktomi)

◼ Also follow the “How to include Your Site” or
“Add URL” link found on many search engines

◼ There are submission services that will do this
for you (www.submit-it.com,
www.netcreations.com/postmaster,
www.register-it.com) and other sites that lists all
registration forms (www.freelinks.com)

◼ Some charge a fee, and some are free
(selfpromotion.com, www.addme.com)

http://www.freelinks.com/

Getting Your Page “Noticed” (con’t)

◼Make sure each of your pages has a link
back to your home page

◼Add your URL to your letterhead, business
cards, and all company materials

◼ Include your URL in all your e-mail
correspondence (i.e. with a sig file)

◼Send out a press release to traditional
media

◼Cross link to other sites, and get customers
and vendors to link to you

Attention Grabbing Techniques for Visitors

◼Give something away “free”

◼Automate e-mail with a “mailto” tag

◼Use a guestbook to solicit contact info

◼Embellish forms with drop downs and
buttons

◼Use multimedia effectively (ie HTML5
multimedia, RealAudio, Shockwave,
Flash, or Java), discussed later in
course

Search Engine Optimization (SEO)

References

Project 1
◼ Design and build your own personal home page with

multiple sections

◼ Requirements:

◼ Multiple sections with internal links to them

◼ Your photo

◼ At least one list

◼ Table

◼ External links (text or graphic)

◼ Colors

◼ Form (with echo)

◼ Image map and/or inline frame

◼ You can use either your version with or without CSS

layouts
◼ Pure HTML, no special plug-ins, viewers, or web page

builder apps in this assignment

Example Student Project 1

Form

Table

Links

Photo

Image

Links

Links to

Homework

Inline

Frame

List

Homework

◼Textbook Chapter 7

◼Project 1 Completion

◼ Including posting to student server

◼Email URL to instructor

◼Appendix – SSL (https)

◼Appendix - frames

Web Security

◼ We pass a tremendous amount of sensitive information back and forth via the

internet, VPN's (Virtual Private Networks), LAN's (Local Area Networks), etc. every

day

◼ What is to stop hackers and thieves from tapping in to that sensitive information

and using it to their own gain?

◼ Most important is SSL (Secured Socket Layer)

◼ In these days of information there are a great number of reasons web designers

and developers use secured pages:

◼ Protect user identities and passwords

◼ Protect credit card transactions and other sensitive information during online consumer

purchases

◼ Allows users to safely view personal and business financial information

◼ Secure the transmissions of other sensitive personal information like your social security

number

◼ Keep secret sensitive corporate information being passed between branches, divisions,

etc.

◼ Granted, there are many more reasons you may come across a need for security

but the short list above gives you some of the highlights

◼ Without the ability for encryption many of the online resources we take for granted

today would not be possible

SSL Process

◼ First: A client (that's the browser) requests a SSL connection with the

server

◼ Second: The server sends a Certificate (more on that later)

◼ Third: The client validates the Certificate, creates a session key and

encrypts the key, and sends it back to the server

◼ Fourth: The server decrypts the session key and establishes the encrypted

connection

◼ However, you have yet to send any real information

◼ All you have right now is an established connection

◼ The Certificate that the server sent out is what makes this whole process

work

◼ A Certificate is obtained from a Certificate Authority, which is sort of like a

notary public that verifies the Certificates authenticity

◼ The Certificate contains the common name of the server, making it

impossible to use on other servers

◼ It also uses keys, a public and private key, to create and verify a secured

connection

SSL Setup

◼ The first is to do is to set up SSL on your own server

◼ Most of you are probably not running your own web server so

we’ll cover just the highlights

◼ In order to set it up you would need a server running Apache or

IIS (Internet Information Services) and be familiar enough with

servers and network configurations to set it up

◼ Next you need a Certificate, which you can get from a certificate

authority like VeriSign (or you can even create a Certificate

yourself)

◼ Once you have the pieces put together it's really as simple as

creating a folder in your web where all of your secured pages

are stored and routing all references to your secured pages

through your secured server

◼ Or you could use the secured server that your web host has

already set up

SSL (con’t)

◼ Most web hosts already have a secured server set up and ready to use

◼ These are referred to as Shared Secure Servers or Shared SSL since the

server takes care of security for several different webs

◼ If your site is hosted by a provider, odds are you have this service available to

you at no additional charge

◼ If your site is being hosted for free (like on a personal web server with your ISP)

you will probably not have a secured server available to you and if you do you

can probably expect to pay for it

◼ As a general rule, the free hosting services don't come with the bells and

whistles like Shared SSL

◼ Simply contact your provider and see if you have the service available to you

◼ They will create a special folder within your web for your secured pages

◼ They should also provide you with a URL reference that routes through their

secured server to your secured folder; the URL should look something like this:

https://www.WebHostSecure.com/YourWeb/YourFolder/YourPage.html

◼ Be sure that the URL reads https; that "s" on the end is what designates the link

as secured

SSL (con’t)

◼ Why wouldn't you just want to secure every page that you create

as a matter of practice?

◼ Well, there's one simple and very good reason → Speed

◼ When you use the encryption capabilities every bit of information

sent back and forth is encrypted and decrypted

◼ That includes graphics, photographs, text, data, etc. and it can

create quite a drag on both upload and download time

◼ If you encrypted everything, your visitors would probably become

very impatient with your site and surf off somewhere else

◼ A good rule of thumb is to only use encryption when absolutely

necessary and consolidate your encryption needs in to as few

pages as possible

◼ This should give you some good working knowledge of SSL and

encryption; for most of you it will be as simple as emailing your

host and having SSL set up for your web

Frames - Deprecated

◼ Your browser window can be divided into

separate “frames” each of which can show

separate HTML documents

◼ You can have links in one HTML document to

control which HTML document shows in

another frame (or even control which HTML

document shows in a separate browser

window)

Frames (con’t)

◼ Browser windows can be split up either

horizontally or vertically

◼ Frames can be nested, so that a window

divided can be further divided

◼ HTML documents are either:

◼ “frameset” documents

◼ content or “body” documents

◼ For nested frames there can be one or

several frameset documents

Frames (con’t)

◼ Two vertical frames:

◼ <html>

◼ <head><title>...</title></head>

◼ <frameset cols=“*,*”>

◼ <frame src=“x.html” name=“left”>

◼ <frame src=“y.html” name=“right”>

◼ </frameset>

◼ </html>

◼ You can give the frames names like we have

done here with “left” and “right”; then they can

be referenced in other frames

Frames (con’t)

◼Two horizontal frames:

◼ <html>

◼ <head><title>...</title></head>

◼ <frameset rows=“*,*”>

◼ <frame src=“x.html” name=“top”>

◼ <frame src=“y.html” name=“bottom”>

◼ </frameset>

◼ </html>

Sizing Frames

◼ Dividing into rows:

◼ <frameset rows=“s1,s2,s3....”

◼ Dividing into columns:

◼ <frameset cols=“s1,s2,s3....”

◼ The sizes (s1...sn) can be:

◼ * (divide up evenly)

◼ absolute number - pixels (ie 300)

◼ percent (ie 30%)

◼ relative number (ie 2*, means twice as big as

others)

Nesting Frames - Directly

◼ <frameset rows=“*,*”>

◼ <frame src=“x.htm”>

◼ <frameset cols =“*,*”>

◼ <frame src =“y.htm”>

◼ <frame src =“z.htm”>

◼ </frameset>

◼ </frameset>

Nesting Frames - Indirectly
[can give frameset as name]

◼ <frameset rows=“*,*”>

◼ <frame src=“x.htm”>

◼ <frame src=“yz.htm”
name = “bottom”>

◼ </frameset>

◼ Document yz.htm:

◼ <frameset cols=“*,*”>

◼ <frame src=“y.htm”>

◼ <frame src=“z.htm”>

Targeting Frames

◼ Use “target” keyword in “a href” tag:
◼ ...

◼ Targets may be:
◼ HTML documents named in a “name” within the

“frame” tag

◼ _self (this document)

◼ _parent (parent document)

◼ _top (update entire window)

◼ _blank (open new browser window)
◼ Use of any other “name” not specified in a “frame” tag will open

a new browser window, and give that window a “name” !

Other Arguments

◼ <FRAMESET FRAMEBORDER=“yes|no” …>

◼ <FRAMESET BORDERCOLOR=“$$$$$$”

…>

◼ <FRAME FRAMEBORDER=“yes|no” …>

◼ <FRAME BORDERCOLOR=“$$$$$$” …>

◼ <FRAME NORESIZE …>

◼ <FRAME SCROLLING=“yes|no|auto” …>

◼ <FRAME MARGINWIDTH=$$ …>

◼ <FRAME MARGINHEIGHT=$$ …>

	Slide 1: Internet Programming Forms and Advanced HTML
	Slide 2: Forms
	Slide 3: Forms (con’t)
	Slide 4: Forms (con’t)
	Slide 5: Forms (con’t)
	Slide 6: Forms (con’t)
	Slide 7: INPUT Types
	Slide 8: INPUT Types (con’t)
	Slide 9: Sample Form
	Slide 10: Data Transfer Methods
	Slide 11: Encoding Type
	Slide 12: Tab Order and Access keys
	Slide 13
	Slide 14: Forms (con’t)
	Slide 15: Form Position and Layout
	Slide 16: Common Layouts
	Slide 17: Field Sets
	Slide 18: Field Sets (con’t)
	Slide 19: Field Sets (con’t)
	Slide 20: Field Sets and INPUT Widgets
	Slide 21: Legend and Labels
	Slide 22: Default Values
	Slide 23: Placeholders
	Slide 24: Example Placeholders and Default Values
	Slide 25: Testing Forms [ACTION="http://www.danbrandon.com/echo.php">]
	Slide 26: Lab 9
	Slide 27: Selection List
	Slide 28: Selection List (con’t)
	Slide 29: Selection List (con’t)
	Slide 30: Selection List (con’t)
	Slide 31: SELECT and Option Group
	Slide 32: Radio (option) Buttons
	Slide 33: Radio Buttons (con’t)
	Slide 34: Check Boxes
	Slide 35: Check Box (con’t)
	Slide 36: Text Area
	Slide 37: Text Area (con’t)
	Slide 38: DataList Suggestions
	Slide 39: Hidden Fields
	Slide 40: HTML 5 Extensions for Forms
	Slide 41: HTML5 Forms (con’t)
	Slide 42: Time/Date Fields
	Slide 43: Spinner
	Slide 44: Slider
	Slide 45: Example HTML5 Form
	Slide 46: Example HTML5 Form [showing email validation]
	Slide 47: Example HTML5 Form [showing “date picker”]
	Slide 48: Example HTML 5 Form Code
	Slide 49: Pattern Attribute
	Slide 50: Pattern Attribute (con’t)
	Slide 51: Form Validation
	Slide 52: Validation (con’t)
	Slide 53: Validation (con’t)
	Slide 54: Validation (con’t)
	Slide 55: Validation (con’t)
	Slide 56: Validation (con’t)
	Slide 57: Validation (con’t)
	Slide 58: Validation (con’t)
	Slide 59: Validation (con’t)
	Slide 60: Validation (con’t)
	Slide 61: Image Maps
	Slide 62: Defining the Map
	Slide 63: Defining the Map (con’t)
	Slide 64: Map Layout
	Slide 65: www.image-maps.com
	Slide 66: http://facstaff.cbu.edu/dbrandon/usa_image/usa_dealers.htm
	Slide 67: In Line Frames
	Slide 68: Lab 10
	Slide 69: “Don’t let me be framed”
	Slide 70: XMP [deprecated]
	Slide 71: HTML Information
	Slide 72: HTML Information (con’t)
	Slide 73: HTTP-EQUIV
	Slide 74: “Validating an HTML 5 Page”
	Slide 75: Protecting Your Site
	Slide 76: Protecting Your Site (con’t)
	Slide 77: Disable Right Click (see JavaScript later in course)
	Slide 78: Protecting Your HTML [encryption]
	Slide 79: Protecting Your HTML (con’t)
	Slide 80: Protecting Your HTML (con’t)
	Slide 81: Protecting Your HTML (con’t)
	Slide 82: Posting Your Home Page
	Slide 83: Posting a Home Page (con’t)
	Slide 84: WinSCP (free download) [http://winscp.net/eng/download.php]
	Slide 85: Posting a Home Page (con’t)
	Slide 86: Posting a Home Page (con’t)
	Slide 87: Posting a Home Page (con’t)
	Slide 88: Posting a Home Page (con’t)
	Slide 89: Posting a Home Page (con’t)
	Slide 90: Posting a Home Page (con’t)
	Slide 91: Posting a Home Page (con’t)
	Slide 92: Posting a Home Page (con’t)
	Slide 93: https://www.cbu.edu/it-services
	Slide 94: Getting Your Page “Noticed”
	Slide 95: Getting Your Page “Noticed” (con’t)
	Slide 96: Getting Your Page “Noticed” (con’t)
	Slide 97: www.internic.net
	Slide 98: www.godaddy.com
	Slide 99: Getting Your Page “Noticed” (con’t)
	Slide 100: Getting Your Page “Noticed” (con’t)
	Slide 101
	Slide 102: Attention Grabbing Techniques for Visitors
	Slide 103: Search Engine Optimization (SEO)
	Slide 104: References
	Slide 105: Project 1
	Slide 106: Example Student Project 1
	Slide 107: Homework
	Slide 108: Web Security
	Slide 109: SSL Process
	Slide 110: SSL Setup
	Slide 111: SSL (con’t)
	Slide 112: SSL (con’t)
	Slide 113: Frames - Deprecated
	Slide 114: Frames (con’t)
	Slide 115: Frames (con’t)
	Slide 116: Frames (con’t)
	Slide 117: Sizing Frames
	Slide 118: Nesting Frames - Directly
	Slide 119: Nesting Frames - Indirectly [can give frameset as name]
	Slide 120: Targeting Frames
	Slide 121: Other Arguments

