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Display Style

◼ Two broad classifications of HTML elements

◼ Block elements: such as paragraphs or 

headings (box model applies)

◼ Inline elements: such as emphasized text or 

inline images

◼ Define the display style for any page using the 
display property:

display: type;

where type defines the display type
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Display Style (con’t)
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Reset Style Sheets

◼ Reset style sheet supersedes a browser’s 

default styles and provides a consistent starting 

point for page design

◼ The first style rule in a sheet is the display property used 

to display HTML5 structural elements as blocks

◼ Premade reset style sheets are freely available on the 

web that contain many style rules used to reconcile the 

differences between browsers and devices
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Reset Style Sheets (con’t)
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Layout Categories

◼ Web page layouts fall into three categories

◼ Fixed layout – Size of the page and page 

elements are fixed, usually using pixels as the unit 

of measure

◼ Fluid layout – The width of the page elements are 

set as a percent of the available screen width

◼ Elastic layout – Images and text are always sized 

in proportion to each other in em units

◼ Responsive design – The layout and design of a 

page changes in response to the device that is 

rendering it
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Layout Categories (con’t)
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Element Width & Height

◼ The width and height of an element are set using the 

following properties:
width: value;

height: value;

where value is the width or height using one of the CSS 

units of measurement or as a percentage of the width or 

height of the parent element

◼ Set limits on the width or height of a block:
min-width: value; min-height: value;

max-width: value; max-height: value;

where value is a length expressed in one of the CSS 

units of measure (usually pixels to match the display 

device measurement unit)
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Element Width & Height (con’t)
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Centering a Block Element

◼ Block elements can be centered horizontally 

within their parent element by setting both the 
left and right margins to auto

◼ Example: center the page body within the 

browser window using the style rule

body {

margin-left: auto;

margin-right: auto;

}
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Centering (con’t)

◼ Centering an element vertically can be 

accomplished by displaying the parent 

element as a table cell and setting the 
vertical-align property to middle

◼ Example: to vertically center the following h1

heading within the div element:

<div>

<h1>Pandaisia Chocolates</h1>

</div>
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Centering (con’t)

◼ Apply the style rule

div {

height: 40px;

display: table-cell;

vertical-align: middle;

}

◼ Using this style rule, the h1 heading will be 

vertically centered
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Centering (con’t)

◼ One can vertically center a single line of text 

within its parent element

◼ Set text line height to be larger than font size

h1 {

font-size: 1.4em;

line-height: 2em;

}

◼ This only works for a single line of text
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Floating an Element

◼ Floating an element takes it out of position 

and places it along the left or right side of its 

parent element

◼ To float an element, apply

float: position;

where position is none (the default), 

left to float the object on the left 

margin or right to float the object on 

the right margin
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Floating (con’t)

◼ If sibling elements are floated along the

same margin, they are placed alongside 

each other within a row

◼For elements to be placed within a single 

row, the combined width of the elements 

cannot exceed the total width of their 

parent element

◼Otherwise excess content will 

automatically wrap to a new row
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Floating(con’t)

◼ To ensure that an element is always displayed 

below floated elements, use

clear: position;

where position is left, right, both, or none

• left – Displays the element only when the left 

margin is clear of floating objects

• right – Displays the element only when the right 

margin is clear of floating objects

◼ both – Displays the element only when both 

margins are clear of floats

◼ none – Displays the element alongside any floated 

objects
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Floating (con’t)
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Floating (con’t)
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Box Model Sizing

◼ Content box model – The width property refers to the 

width of an element content only

◼ Additional space include padding or borders

◼ Border box model – The width property is based on 

the sum of the content, padding, and border spaces

◼ Additional space taken up by the padding and border 

is subtracted from space given to the content

◼ The layout model can be chosen using

box-sizing: type;

where type is content-box (the default), border-box, or 

inherit (to inherit the property defined for the element’s 

container)
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Box Model Sizing (con’t)
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Container Collapse

◼ Container collapse – An empty container 

with no content

◼ Elements in the container are floated
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Collapse (con’t)

◼ One can use the after pseudo-element to add a placeholder 

element after a layout element such as a footer

◼ The general style rule is

container::after {

clear: both;

content: “”;

display: table;

}

where container is the selector for the element 

containing floating objects

◼ The clear property keeps the placeholder element from 

being inserted until both margins are clear of floats
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Grid-Based Layouts

◼ In a grid layout, the page is comprised of a 

system of intersecting rows and columns that 

form a grid

◼ The rows are based on the page content

◼ The number of columns is based on the 

number that provides the most flexibility in 

laying out the page content

◼ Many grid systems are based on 12 columns
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CSS Grids (con’t)
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CSS Grids (con’t)

◼ Advantages of using a grid:

◼ Grids add order to the presentation of page 

content

◼ A consistent logical design gives readers the 

confidence to find the information they seek

◼ New content can be easily placed within a grid in a 

manner consistent with previously entered data

◼ It is easily accessible for users with disabilities and 

special needs

◼ It increases development speed with a systematic 

framework for the page layout
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CSS Grids (con’t)

◼ Fixed grids – Every column has a fixed 

position

◼ Widths of the columns and margins are 

specified in pixels

◼ Fluid grids – Provides more support across 

different devices with different screen sizes

◼ Column width is expressed in percentages
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CSS Grids (con’t)

◼ The CSS grid model is a set of CSS design styles used 

to create grid-based layouts

◼ Each CSS grid is laid out in a set of row and column 

gridlines

◼ To reference positions within a grid, the CSS grid model 

numbers the gridlines in the horizontal and vertical 

directions

◼ Start from the top-left corner of the grid with the row 

gridlines and then moving left to right with the column 

gridlines along the bottom

◼ Both gridlines start with a value of “1” and increase in 

value down and across the grid
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CSS Grids (con’t)

◼ Gridlines can be referenced in the reverse 

order starting

◼ Start from the bottom-right corner with the first row 

and column gridlines are given a value of “-1”

◼ The advantage of using both positive and 

negative gridline numbers

◼ Can always reference both the first gridline (1) and 

the last gridline (-1) no matter the size of the grid
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CSS Grids (con’t)

◼ The cells that are created from the 

intersection of the horizontal and vertical 

gridlines will contain the elements from the 

web page

◼ An element can be contained within a single 

cell or it can span several cells within a grid 

area

◼ Note that grid areas must be rectangular; you 

cannot have an L-shaped grid area
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CSS Grids (con’t)

◼To create a CSS grid, first identify a 

page element as the grid container 

using the following display property:

display: grid;

◼The entire grid itself is considered a 

block-level element and thus could be 

floated or resized within the web page 

just like any other block-level element
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CSS Grids (con’t)
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CSS Grids (con’t)

◼ Grids can also be created as inline elements 

using the style:

display: inline-grid;

which creates the grid inline with other 

elements in the web page
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CSS Grids (con’t)

◼ To define the number and size of grid columns, use the 
following grid-template-columns style:

grid-template-columns: width1 width2 …; 

where width1, width2, etc. is a space-separated list that 

defines the width of the columns or tracks within the grid

◼ Column widths can be expressed using any CSS unit 

measures such as pixels, em

units, and percentages

◼ The keyword auto can be used to allow the column width 

to be automatically set by the browser
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CSS Grids (con’t)
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CSS Grids (con’t)

◼ An explicit grid completely defines the 

number and size of the grid rows and 

columns

◼ An implicit grid contains rows and/or 

columns that are generated by the browser 

as it populates the grid with items from the 

grid container

◼ In most grid layouts, columns are explicitly 

defined and the browser fills out the grid rows 

drawn from the web page content
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CSS Grids (con’t)

◼ To explicitly define the number of rows and their height, 

use the following
grid-template-rows property:

grid-template-rows: height1 height2 …;

where height1, height2, etc. define the heights of the 

grid rows
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CSS Grids (con’t)

◼ A grid layout can adapt to devices of various screen 

widths and sizes by using flexible units

◼ A fr (fractional) unit, indicated by the unit abbreviation fr, 

creates grid tracks that expand or contract in size to fill 

available space while retaining their relative proportions to 

one another

◼ Fractional units are often combined with absolute units to 

create grid layouts that are both fixed and flexible

◼ The following style rule generates a grid in which the 

width of the first column is set to 250 pixels with the 

remaining space allotted to the other two columns in a 

proportion of 2 to 1
grid-template-columns: 250px 2fr 1fr
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CSS Grids (con’t)

◼ Some grid layouts involve many columns so it is difficult 

to specify column sizes

◼ The layout style can be simplified by using the following 
repeat() function:

repeat(repeat, tracks)

where repeat is the number of repetitions of the tracks 

specified in tracks

◼ In place of a repeat value, the keyword auto-fill can be used to 

fill up the grid with as many columns (or rows) that will fit within the 

grid container

◼ The following style uses the auto-fill keyword to fill the grid with 

as many 100 pixel-wide columns that will fit within the container:

grid-template-columns: 250px repeat(auto-fill, 100px)
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CSS Grids (con’t)

◼ It is possible to switch between fixed and 

flexible track sizes using the following 

function

minmax(min, max)

where min is the minimum track size for a 

row and column and max is the maximum

◼ Example:

grid-template-columns: repeat(auto-

fill, minmax(100px, 1fr));
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CSS Grids (con’t)

◼ Outlines - Lines drawn around an element, 

enclosing the element content, padding, and 

border spaces

◼ Outline-width: value; – Specifies the 

width of a line in CSS units or thin, 

medium, or thick

◼ Outline-color: color; – Specifies the 

color of a line

◼ Properties of color are: CSS color name or 

value
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CSS Grids (con’t)

◼ Outline-style: style; - Specifies the 

design of a line

◼ Properties of style are: solid, 

double, dotted, dashed, 

groove, inset, ridge, or outset

◼ Outline properties can be combined:

width style color;

where width, style, and color are the 

values for the line’s width, design, and color
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CSS Grids (con’t)

◼ By default, grid items are laid out in document order 

going from left to right and up to down, with each item 

placed within a single cell

◼ In many layouts however, it might be desirable to move 

items around or a have a single item occupy multiple 

rows and column

◼ To place the article element in a grid cell located in 

the first row and second column of the grid, apply the 

following style rule:
article {

grid-row: 1;

grid-column: 2;

}
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CSS Grids (con’t)

◼ To move a grid item to a specific location within the grid, 
use the following grid-row and grid-column properties:

grid-row: row;

grid-column: column;

where row is the row number and column is the column 

number

◼ To extend a grid item so that it covers multiple rows or 

multiple columns, include the starting and ending gridline 

in the style property as follows:
grid-row: start/end;

grid-column: start/end;

where start is the starting gridline and end is the ending 

gridline
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CSS Grids (con’t)

◼ Starting and ending gridlines can be expressed in the 

following four properties:

grid-column-start: integer;

grid-column-end: integer;

grid-row-start: integer;

grid-row-end: integer;

◼ Another way of setting the size of a grid cell is with the 
span keyword

◼ The general syntax is:
grid-row: span value;

grid-column: span value;

where value is the number of rows or columns covered
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CSS Grids (con’t)

◼ To specify both the location and the size of the 

item, include the starting gridline in the style rule

◼ Example:

article {

grid-row: 1/span 2;

grid-column: 4/span 3;

}

In the grid areas approach to layout you identify 

sections of the grid with item names, creating a 

textual representation of the layou
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CSS Grids (con’t)

◼ To create a textual representation in a style sheet, use the 
following grid-template-areas property:

grid-template-areas: "row1"

"row2"

…;

where row1, row2, etc. are text strings containing the 

names of the areas for each row

◼ To assign elements to grid areas, use the following 
grid-area property:

grid-area: area;

where area is the name of an area defined in the grid-

template-areas property
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CSS Grids (con’t)

◼ The grid-area property can be used as a 

shorthand to place and size grid items using 

gridline numbers

◼ The general syntax is:

grid-area: row-start/col-start/row-

end/col-end;

where row-start, col-start, row-end, and 

col-end are the starting and ending gridline 

numbers from the grid’s rows and columns 
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CSS Grids (con’t)

◼ Another part of grid layout is defining the 

space between items in a grid

◼ The gap size is defined using the following 

grid-gap property:

grid-gap: row column;

where row is the internal space between grid 

rows and column is the internal space 

between grid columns
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CSS Grids (con’t)

◼ Grid gaps for rows and columns can also be 

set using the following properties:

grid-column-gap: value;

grid-row-gap: value;

where value is the size of the gap in one of 

the CSS units of measure

◼ Gap size setting is applied only to the interior 

space between the grid items
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CSS Grids (con’t)

◼ The content within the grid cell can be 
positioned using the align-items and 

justify-items properties

◼ The align-items property sets the vertical 

placement of the content

◼ The justify-items property sets the 

horizontal placement

◼ The syntax of both properties is:

align-items: placement;

justify-items: placement;
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CSS Grids (con’t)

where placement is:

◼ stretch to expand the content between the 

top/bottom or left/right edges, removing any 

spacing between the content and the cell 

border (the default)

◼ start to position the content with the top or 

left edge of the cell

◼ end to position the content with the bottom or 

right edge of the cell

◼ center to center the content vertically or 

horizontally within the cell
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CSS Grids (con’t)

◼ To align and justify only one cell, apply the 
align-self and justify-self properties to 

the content within the grid cell

◼ Example

article {

align-self: center;

justify-self: center;

}
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CSS Grids (con’t)

◼ To modify grid position use the align-

content and justify-content properties:

align-content: placement;

justify-content: placement;

Where placement is:

◼start to position the grid with the top or left 

edge of the container (the default)

◼end to position the grid with the bottom or right 

edge of the container
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CSS Grids (con’t)

◼center to center the grid vertically or 

horizontally within the container

◼space-around to insert an even amount of 

space between each grid item with no space at 

the far ends

◼space-between to insert an even amount of 

space between each grid item, with no space 

at the far ends

◼space-evenly to insert an even amount of 

space between each grid item, including the 

far ends
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CSS Positioning

◼ To place an element at a specific position within its 

container, use

position: type;

top: value;

right: value;

bottom: value;

left: value;

where type indicates the kind of positioning 

applied to the element and top, right, 

bottom, and left properties indicate the 

coordinates of the element
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CSS Positioning (con’t)

◼Static positioning – The element is 

placed where it would have fallen 

naturally within the flow of the document

◼Relative positioning – The element is 

moved out of its normal position in the 

document flow

◼Absolute positioning – The element is 

placed at specific coordinates within 

containers
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CSS Positioning (con’t)

◼ Moving an object via relative positioning:
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CSS Positioning (con’t)

◼ Using absolute positioning:
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CSS Positioning (con’t)

◼ Fixed positioning – Fixes an object within a 

browser window to avoids its movement

◼ Inherited positioning – Allows an element to 

inherit the position value of its parent element
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CSS Positioning (con’t)

◼ Setting positioning type in parent object:
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CSS Positioning (con’t)

◼ Overflow property – Controls a browser that handles excess 

content

overflow: type;

where type is visible (the default), hidden, scroll, or 
auto

◼ visible – Instructs browsers to increase the height of an 

element to fit overflow contents

◼ hidden – Keeps an element at the specified height and width, but 

cuts off excess content

◼ scroll – Keeps an element at the specified dimensions, but adds 

horizontal and vertical scroll bars 

◼ auto – Keeps an element at the specified size, adding scroll bars 

when they are needed
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CSS Positioning (con’t)
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CSS Positioning (con’t)

◼ CSS3 provides the overflow-x and overflow-

y properties to handle overflow specially in the 

horizontal and vertical directions
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Clipping an Object

◼ The clip property defines a rectangular region 

through which an element’s content can be 

viewed

◼ Anything that lies outside the boundary of the 

rectangle is hidden

◼ The clip property syntax is

clip: rect(top, right, bottom, 

left);

where top, right, bottom, and left define 

the coordinates of the clipping rectangle
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Clipping (con’t)
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Stacking Elements

◼ By default, elements that are loaded later by 

a browser are displayed on top of elements 

that are loaded earlier

◼ To specify different stacking order, use the 
following z-index property:

z-index: value;

where value is a positive or negative 

integer, or the keyword auto
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Stacking (con’t)

◼ The z-index property works only for elements 

that are placed with absolute positioning

◼ An element’s z-index value determines its 

position relative only to other elements that 

share a common parent
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HTML 5 vs Earlier Sectioning
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Revised John Doe Homepage with 

CSS Layouts
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Revised Home page (con’t)

Copyright Dan Brandon, PhD, PMP

70



Revised Home page (con’t)
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Revised Home page (con’t)
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htmllab12.htm
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htmllab12.htm
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{section}

{footer}
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CSS Frameworks

◼ A framework is a software package that 

provides a library of tools to design a website

◼ Includes style sheets for grid layouts and 

built-in scripts to provide support for a 

variety of browsers and devices

◼ Some popular CSS frameworks include

◼ Bootstrap, Neat, Unsemantic, Profound 

Grid, HTML5 Boilerplate, Skeleton
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Bootstrap
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Bootstrap is likely the most popular HTML, CSS, and JavaScript framework for 

developing responsive, mobile-first websites. Bootstrap is completely free to 

download and use.



Bootstrap (con’t)
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Bootstrap Templates
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Bootstrap Content Delivery 

Network

◼ Bootstrap provides its files thru its Content Delivery 

Network (CDN)

◼ This requires one to be connected to the internet when

developing/using bootstrap boilerplate CSS files

◼ One can also download the Bootstrap source

code, but that is not necessary; there are over 

10,000 lines of code in the Bootstrap CSS file

◼ The next slide shows the code that needs to be included 

into your HTML file to include the Bootstrap code (CSS 

and JavaScript files)

◼ Bootstrap uses jQuery and Popper
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Links to Load Bootstrap

◼ <html>

◼ <head>

◼ <title>Welcome</title>

◼ <meta charset="utf-8">

◼ <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">

◼ <link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css" 

integrity="sha384-Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh" 

crossorigin="anonymous">

◼ </head>

◼ <body>

◼ <h1>Welcome to My Website</h1>

◼ <p>

◼ Some text…

◼ </p>

◼ <script src="https://code.jquery.com/jquery-3.4.1.slim.min.js" integrity="sha384-

J6qa4849blE2+poT4WnyKhv5vZF5SrPo0iEjwBvKU7imGFAV0wwj1yYfoRSJoZ+n" 

crossorigin="anonymous"></script>

◼ <script src="https://cdn.jsdelivr.net/npm/popper.js@1.16.0/dist/umd/popper.min.js" integrity="sha384-

Q6E9RHvbIyZFJoft+2mJbHaEWldlvI9IOYy5n3zV9zzTtmI3UksdQRVvoxMfooAo" 

crossorigin="anonymous"></script>

◼ <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/js/bootstrap.min.js" integrity="sha384-

wfSDF2E50Y2D1uUdj0O3uMBJnjuUD4Ih7YwaYd1iqfktj0Uod8GCExl3Og8ifwB6" 

crossorigin="anonymous"></script>

◼ </body>

◼ </html> Copyright Dan Brandon, PhD, PMP
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Bootstrap Classes Reference
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HomeworkHomework

Textbook Chapter 3

Create another model for your homepage 

using CSS layouts and email new 

versions of HTML and CSS files


