
Internet Programming

Web Page Layout

Dan Brandon, Ph.D., PMP

1Copyright Dan Brandon, PhD, PMP



Display Style

◼ Two broad classifications of HTML elements

◼ Block elements: such as paragraphs or 

headings (box model applies)

◼ Inline elements: such as emphasized text or 

inline images

◼ Define the display style for any page using the 
display property:

display: type;

where type defines the display type

Copyright Dan Brandon, PhD, PMP

2



Display Style (con’t)

Copyright Dan Brandon, PhD, PMP

3



Reset Style Sheets

◼ Reset style sheet supersedes a browser’s 

default styles and provides a consistent starting 

point for page design

◼ The first style rule in a sheet is the display property used 

to display HTML5 structural elements as blocks

◼ Premade reset style sheets are freely available on the 

web that contain many style rules used to reconcile the 

differences between browsers and devices

Copyright Dan Brandon, PhD, PMP

4



Reset Style Sheets (con’t)

Copyright Dan Brandon, PhD, PMP

5



Layout Categories

◼ Web page layouts fall into three categories

◼ Fixed layout – Size of the page and page 

elements are fixed, usually using pixels as the unit 

of measure

◼ Fluid layout – The width of the page elements are 

set as a percent of the available screen width

◼ Elastic layout – Images and text are always sized 

in proportion to each other in em units

◼ Responsive design – The layout and design of a 

page changes in response to the device that is 

rendering it

Copyright Dan Brandon, PhD, PMP

6



Layout Categories (con’t)

Copyright Dan Brandon, PhD, PMP

7



Element Width & Height

◼ The width and height of an element are set using the 

following properties:
width: value;

height: value;

where value is the width or height using one of the CSS 

units of measurement or as a percentage of the width or 

height of the parent element

◼ Set limits on the width or height of a block:
min-width: value; min-height: value;

max-width: value; max-height: value;

where value is a length expressed in one of the CSS 

units of measure (usually pixels to match the display 

device measurement unit)
Copyright Dan Brandon, PhD, PMP

8



Element Width & Height (con’t)

Copyright Dan Brandon, PhD, PMP

9



Centering a Block Element

◼ Block elements can be centered horizontally 

within their parent element by setting both the 
left and right margins to auto

◼ Example: center the page body within the 

browser window using the style rule

body {

margin-left: auto;

margin-right: auto;

}

Copyright Dan Brandon, PhD, PMP

10



Centering (con’t)

◼ Centering an element vertically can be 

accomplished by displaying the parent 

element as a table cell and setting the 
vertical-align property to middle

◼ Example: to vertically center the following h1

heading within the div element:

<div>

<h1>Pandaisia Chocolates</h1>

</div>

Copyright Dan Brandon, PhD, PMP

11



Centering (con’t)

◼ Apply the style rule

div {

height: 40px;

display: table-cell;

vertical-align: middle;

}

◼ Using this style rule, the h1 heading will be 

vertically centered

Copyright Dan Brandon, PhD, PMP

12



Centering (con’t)

◼ One can vertically center a single line of text 

within its parent element

◼ Set text line height to be larger than font size

h1 {

font-size: 1.4em;

line-height: 2em;

}

◼ This only works for a single line of text

Copyright Dan Brandon, PhD, PMP

13



Floating an Element

◼ Floating an element takes it out of position 

and places it along the left or right side of its 

parent element

◼ To float an element, apply

float: position;

where position is none (the default), 

left to float the object on the left 

margin or right to float the object on 

the right margin

Copyright Dan Brandon, PhD, PMP

14



Floating (con’t)

◼ If sibling elements are floated along the

same margin, they are placed alongside 

each other within a row

◼For elements to be placed within a single 

row, the combined width of the elements 

cannot exceed the total width of their 

parent element

◼Otherwise excess content will 

automatically wrap to a new row

Copyright Dan Brandon, PhD, PMP

15



Floating(con’t)

◼ To ensure that an element is always displayed 

below floated elements, use

clear: position;

where position is left, right, both, or none

• left – Displays the element only when the left 

margin is clear of floating objects

• right – Displays the element only when the right 

margin is clear of floating objects

◼ both – Displays the element only when both 

margins are clear of floats

◼ none – Displays the element alongside any floated 

objects
Copyright Dan Brandon, PhD, PMP

16



Floating (con’t)

Copyright Dan Brandon, PhD, PMP

17



Floating (con’t)

Copyright Dan Brandon, PhD, PMP

18



Box Model Sizing

◼ Content box model – The width property refers to the 

width of an element content only

◼ Additional space include padding or borders

◼ Border box model – The width property is based on 

the sum of the content, padding, and border spaces

◼ Additional space taken up by the padding and border 

is subtracted from space given to the content

◼ The layout model can be chosen using

box-sizing: type;

where type is content-box (the default), border-box, or 

inherit (to inherit the property defined for the element’s 

container)
Copyright Dan Brandon, PhD, PMP

19



Box Model Sizing (con’t)

Copyright Dan Brandon, PhD, PMP

20



Container Collapse

◼ Container collapse – An empty container 

with no content

◼ Elements in the container are floated

Copyright Dan Brandon, PhD, PMP

21



Collapse (con’t)

◼ One can use the after pseudo-element to add a placeholder 

element after a layout element such as a footer

◼ The general style rule is

container::after {

clear: both;

content: “”;

display: table;

}

where container is the selector for the element 

containing floating objects

◼ The clear property keeps the placeholder element from 

being inserted until both margins are clear of floats

Copyright Dan Brandon, PhD, PMP

22



Grid-Based Layouts

◼ In a grid layout, the page is comprised of a 

system of intersecting rows and columns that 

form a grid

◼ The rows are based on the page content

◼ The number of columns is based on the 

number that provides the most flexibility in 

laying out the page content

◼ Many grid systems are based on 12 columns

Copyright Dan Brandon, PhD, PMP

23



CSS Grids (con’t)

Copyright Dan Brandon, PhD, PMP

24



CSS Grids (con’t)

◼ Advantages of using a grid:

◼ Grids add order to the presentation of page 

content

◼ A consistent logical design gives readers the 

confidence to find the information they seek

◼ New content can be easily placed within a grid in a 

manner consistent with previously entered data

◼ It is easily accessible for users with disabilities and 

special needs

◼ It increases development speed with a systematic 

framework for the page layout

Copyright Dan Brandon, PhD, PMP

25



CSS Grids (con’t)

◼ Fixed grids – Every column has a fixed 

position

◼ Widths of the columns and margins are 

specified in pixels

◼ Fluid grids – Provides more support across 

different devices with different screen sizes

◼ Column width is expressed in percentages

Copyright Dan Brandon, PhD, PMP

26



CSS Grids (con’t)

◼ The CSS grid model is a set of CSS design styles used 

to create grid-based layouts

◼ Each CSS grid is laid out in a set of row and column 

gridlines

◼ To reference positions within a grid, the CSS grid model 

numbers the gridlines in the horizontal and vertical 

directions

◼ Start from the top-left corner of the grid with the row 

gridlines and then moving left to right with the column 

gridlines along the bottom

◼ Both gridlines start with a value of “1” and increase in 

value down and across the grid

Copyright Dan Brandon, PhD, PMP

27



CSS Grids (con’t)

◼ Gridlines can be referenced in the reverse 

order starting

◼ Start from the bottom-right corner with the first row 

and column gridlines are given a value of “-1”

◼ The advantage of using both positive and 

negative gridline numbers

◼ Can always reference both the first gridline (1) and 

the last gridline (-1) no matter the size of the grid

Copyright Dan Brandon, PhD, PMP

28



CSS Grids (con’t)

◼ The cells that are created from the 

intersection of the horizontal and vertical 

gridlines will contain the elements from the 

web page

◼ An element can be contained within a single 

cell or it can span several cells within a grid 

area

◼ Note that grid areas must be rectangular; you 

cannot have an L-shaped grid area

Copyright Dan Brandon, PhD, PMP

29



CSS Grids (con’t)

◼To create a CSS grid, first identify a 

page element as the grid container 

using the following display property:

display: grid;

◼The entire grid itself is considered a 

block-level element and thus could be 

floated or resized within the web page 

just like any other block-level element

Copyright Dan Brandon, PhD, PMP

30



CSS Grids (con’t)

Copyright Dan Brandon, PhD, PMP

31



CSS Grids (con’t)

◼ Grids can also be created as inline elements 

using the style:

display: inline-grid;

which creates the grid inline with other 

elements in the web page

Copyright Dan Brandon, PhD, PMP

32



CSS Grids (con’t)

◼ To define the number and size of grid columns, use the 
following grid-template-columns style:

grid-template-columns: width1 width2 …; 

where width1, width2, etc. is a space-separated list that 

defines the width of the columns or tracks within the grid

◼ Column widths can be expressed using any CSS unit 

measures such as pixels, em

units, and percentages

◼ The keyword auto can be used to allow the column width 

to be automatically set by the browser

Copyright Dan Brandon, PhD, PMP

33



CSS Grids (con’t)

Copyright Dan Brandon, PhD, PMP

34



CSS Grids (con’t)

◼ An explicit grid completely defines the 

number and size of the grid rows and 

columns

◼ An implicit grid contains rows and/or 

columns that are generated by the browser 

as it populates the grid with items from the 

grid container

◼ In most grid layouts, columns are explicitly 

defined and the browser fills out the grid rows 

drawn from the web page content

Copyright Dan Brandon, PhD, PMP

35



CSS Grids (con’t)

◼ To explicitly define the number of rows and their height, 

use the following
grid-template-rows property:

grid-template-rows: height1 height2 …;

where height1, height2, etc. define the heights of the 

grid rows

Copyright Dan Brandon, PhD, PMP

36



CSS Grids (con’t)

◼ A grid layout can adapt to devices of various screen 

widths and sizes by using flexible units

◼ A fr (fractional) unit, indicated by the unit abbreviation fr, 

creates grid tracks that expand or contract in size to fill 

available space while retaining their relative proportions to 

one another

◼ Fractional units are often combined with absolute units to 

create grid layouts that are both fixed and flexible

◼ The following style rule generates a grid in which the 

width of the first column is set to 250 pixels with the 

remaining space allotted to the other two columns in a 

proportion of 2 to 1
grid-template-columns: 250px 2fr 1fr

Copyright Dan Brandon, PhD, PMP

37



CSS Grids (con’t)

◼ Some grid layouts involve many columns so it is difficult 

to specify column sizes

◼ The layout style can be simplified by using the following 
repeat() function:

repeat(repeat, tracks)

where repeat is the number of repetitions of the tracks 

specified in tracks

◼ In place of a repeat value, the keyword auto-fill can be used to 

fill up the grid with as many columns (or rows) that will fit within the 

grid container

◼ The following style uses the auto-fill keyword to fill the grid with 

as many 100 pixel-wide columns that will fit within the container:

grid-template-columns: 250px repeat(auto-fill, 100px)

Copyright Dan Brandon, PhD, PMP

38



CSS Grids (con’t)

◼ It is possible to switch between fixed and 

flexible track sizes using the following 

function

minmax(min, max)

where min is the minimum track size for a 

row and column and max is the maximum

◼ Example:

grid-template-columns: repeat(auto-

fill, minmax(100px, 1fr));

Copyright Dan Brandon, PhD, PMP

39



CSS Grids (con’t)

◼ Outlines - Lines drawn around an element, 

enclosing the element content, padding, and 

border spaces

◼ Outline-width: value; – Specifies the 

width of a line in CSS units or thin, 

medium, or thick

◼ Outline-color: color; – Specifies the 

color of a line

◼ Properties of color are: CSS color name or 

value

Copyright Dan Brandon, PhD, PMP

40



CSS Grids (con’t)

◼ Outline-style: style; - Specifies the 

design of a line

◼ Properties of style are: solid, 

double, dotted, dashed, 

groove, inset, ridge, or outset

◼ Outline properties can be combined:

width style color;

where width, style, and color are the 

values for the line’s width, design, and color

Copyright Dan Brandon, PhD, PMP

41



CSS Grids (con’t)

◼ By default, grid items are laid out in document order 

going from left to right and up to down, with each item 

placed within a single cell

◼ In many layouts however, it might be desirable to move 

items around or a have a single item occupy multiple 

rows and column

◼ To place the article element in a grid cell located in 

the first row and second column of the grid, apply the 

following style rule:
article {

grid-row: 1;

grid-column: 2;

}
Copyright Dan Brandon, PhD, PMP

42



CSS Grids (con’t)

◼ To move a grid item to a specific location within the grid, 
use the following grid-row and grid-column properties:

grid-row: row;

grid-column: column;

where row is the row number and column is the column 

number

◼ To extend a grid item so that it covers multiple rows or 

multiple columns, include the starting and ending gridline 

in the style property as follows:
grid-row: start/end;

grid-column: start/end;

where start is the starting gridline and end is the ending 

gridline
Copyright Dan Brandon, PhD, PMP

43



CSS Grids (con’t)

◼ Starting and ending gridlines can be expressed in the 

following four properties:

grid-column-start: integer;

grid-column-end: integer;

grid-row-start: integer;

grid-row-end: integer;

◼ Another way of setting the size of a grid cell is with the 
span keyword

◼ The general syntax is:
grid-row: span value;

grid-column: span value;

where value is the number of rows or columns covered
Copyright Dan Brandon, PhD, PMP

44



CSS Grids (con’t)

◼ To specify both the location and the size of the 

item, include the starting gridline in the style rule

◼ Example:

article {

grid-row: 1/span 2;

grid-column: 4/span 3;

}

In the grid areas approach to layout you identify 

sections of the grid with item names, creating a 

textual representation of the layou

Copyright Dan Brandon, PhD, PMP

45



CSS Grids (con’t)

◼ To create a textual representation in a style sheet, use the 
following grid-template-areas property:

grid-template-areas: "row1"

"row2"

…;

where row1, row2, etc. are text strings containing the 

names of the areas for each row

◼ To assign elements to grid areas, use the following 
grid-area property:

grid-area: area;

where area is the name of an area defined in the grid-

template-areas property

Copyright Dan Brandon, PhD, PMP

46



CSS Grids (con’t)

◼ The grid-area property can be used as a 

shorthand to place and size grid items using 

gridline numbers

◼ The general syntax is:

grid-area: row-start/col-start/row-

end/col-end;

where row-start, col-start, row-end, and 

col-end are the starting and ending gridline 

numbers from the grid’s rows and columns 

Copyright Dan Brandon, PhD, PMP

47



CSS Grids (con’t)

◼ Another part of grid layout is defining the 

space between items in a grid

◼ The gap size is defined using the following 

grid-gap property:

grid-gap: row column;

where row is the internal space between grid 

rows and column is the internal space 

between grid columns

Copyright Dan Brandon, PhD, PMP

48



CSS Grids (con’t)

◼ Grid gaps for rows and columns can also be 

set using the following properties:

grid-column-gap: value;

grid-row-gap: value;

where value is the size of the gap in one of 

the CSS units of measure

◼ Gap size setting is applied only to the interior 

space between the grid items

Copyright Dan Brandon, PhD, PMP

49



CSS Grids (con’t)

◼ The content within the grid cell can be 
positioned using the align-items and 

justify-items properties

◼ The align-items property sets the vertical 

placement of the content

◼ The justify-items property sets the 

horizontal placement

◼ The syntax of both properties is:

align-items: placement;

justify-items: placement;

Copyright Dan Brandon, PhD, PMP

50



CSS Grids (con’t)

where placement is:

◼ stretch to expand the content between the 

top/bottom or left/right edges, removing any 

spacing between the content and the cell 

border (the default)

◼ start to position the content with the top or 

left edge of the cell

◼ end to position the content with the bottom or 

right edge of the cell

◼ center to center the content vertically or 

horizontally within the cell
Copyright Dan Brandon, PhD, PMP

51



CSS Grids (con’t)

◼ To align and justify only one cell, apply the 
align-self and justify-self properties to 

the content within the grid cell

◼ Example

article {

align-self: center;

justify-self: center;

}

Copyright Dan Brandon, PhD, PMP

52



CSS Grids (con’t)

◼ To modify grid position use the align-

content and justify-content properties:

align-content: placement;

justify-content: placement;

Where placement is:

◼start to position the grid with the top or left 

edge of the container (the default)

◼end to position the grid with the bottom or right 

edge of the container

Copyright Dan Brandon, PhD, PMP

53



CSS Grids (con’t)

◼center to center the grid vertically or 

horizontally within the container

◼space-around to insert an even amount of 

space between each grid item with no space at 

the far ends

◼space-between to insert an even amount of 

space between each grid item, with no space 

at the far ends

◼space-evenly to insert an even amount of 

space between each grid item, including the 

far ends

Copyright Dan Brandon, PhD, PMP

54



CSS Positioning

◼ To place an element at a specific position within its 

container, use

position: type;

top: value;

right: value;

bottom: value;

left: value;

where type indicates the kind of positioning 

applied to the element and top, right, 

bottom, and left properties indicate the 

coordinates of the element
Copyright Dan Brandon, PhD, PMP

55



CSS Positioning (con’t)

◼Static positioning – The element is 

placed where it would have fallen 

naturally within the flow of the document

◼Relative positioning – The element is 

moved out of its normal position in the 

document flow

◼Absolute positioning – The element is 

placed at specific coordinates within 

containers

Copyright Dan Brandon, PhD, PMP

56



CSS Positioning (con’t)

◼ Moving an object via relative positioning:

Copyright Dan Brandon, PhD, PMP

57



CSS Positioning (con’t)

◼ Using absolute positioning:

Copyright Dan Brandon, PhD, PMP

58



CSS Positioning (con’t)

◼ Fixed positioning – Fixes an object within a 

browser window to avoids its movement

◼ Inherited positioning – Allows an element to 

inherit the position value of its parent element

Copyright Dan Brandon, PhD, PMP

59



CSS Positioning (con’t)

◼ Setting positioning type in parent object:

Copyright Dan Brandon, PhD, PMP

60



CSS Positioning (con’t)

◼ Overflow property – Controls a browser that handles excess 

content

overflow: type;

where type is visible (the default), hidden, scroll, or 
auto

◼ visible – Instructs browsers to increase the height of an 

element to fit overflow contents

◼ hidden – Keeps an element at the specified height and width, but 

cuts off excess content

◼ scroll – Keeps an element at the specified dimensions, but adds 

horizontal and vertical scroll bars 

◼ auto – Keeps an element at the specified size, adding scroll bars 

when they are needed

Copyright Dan Brandon, PhD, PMP

61



CSS Positioning (con’t)

Copyright Dan Brandon, PhD, PMP

62



CSS Positioning (con’t)

◼ CSS3 provides the overflow-x and overflow-

y properties to handle overflow specially in the 

horizontal and vertical directions

Copyright Dan Brandon, PhD, PMP

63



Clipping an Object

◼ The clip property defines a rectangular region 

through which an element’s content can be 

viewed

◼ Anything that lies outside the boundary of the 

rectangle is hidden

◼ The clip property syntax is

clip: rect(top, right, bottom, 

left);

where top, right, bottom, and left define 

the coordinates of the clipping rectangle
Copyright Dan Brandon, PhD, PMP

64



Clipping (con’t)

Copyright Dan Brandon, PhD, PMP

65



Stacking Elements

◼ By default, elements that are loaded later by 

a browser are displayed on top of elements 

that are loaded earlier

◼ To specify different stacking order, use the 
following z-index property:

z-index: value;

where value is a positive or negative 

integer, or the keyword auto

Copyright Dan Brandon, PhD, PMP

66



Stacking (con’t)

◼ The z-index property works only for elements 

that are placed with absolute positioning

◼ An element’s z-index value determines its 

position relative only to other elements that 

share a common parent

Copyright Dan Brandon, PhD, PMP

67



HTML 5 vs Earlier Sectioning

Copyright Dan Brandon, PhD, PMP

68



Revised John Doe Homepage with 

CSS Layouts

Copyright Dan Brandon, PhD, PMP

69



Revised Home page (con’t)

Copyright Dan Brandon, PhD, PMP

70



Revised Home page (con’t)

Copyright Dan Brandon, PhD, PMP

71



Revised Home page (con’t)

Copyright Dan Brandon, PhD, PMP

72



htmllab12.htm

Copyright Dan Brandon, PhD, PMP

73



htmllab12.htm

Copyright Dan Brandon, PhD, PMP

74

{header}

{nav} {aside}

{section}

{footer}

Section is set up as a grid.



CSS Frameworks

◼ A framework is a software package that 

provides a library of tools to design a website

◼ Includes style sheets for grid layouts and 

built-in scripts to provide support for a 

variety of browsers and devices

◼ Some popular CSS frameworks include

◼ Bootstrap, Neat, Unsemantic, Profound 

Grid, HTML5 Boilerplate, Skeleton

Copyright Dan Brandon, PhD, PMP

75



Bootstrap

Copyright Dan Brandon, PhD, PMP

76

Bootstrap is likely the most popular HTML, CSS, and JavaScript framework for 

developing responsive, mobile-first websites. Bootstrap is completely free to 

download and use.



Bootstrap (con’t)

77



Bootstrap Templates

Copyright Dan Brandon, PhD, PMP

78

Typical Website

Online Store



Bootstrap Content Delivery 

Network

◼ Bootstrap provides its files thru its Content Delivery 

Network (CDN)

◼ This requires one to be connected to the internet when

developing/using bootstrap boilerplate CSS files

◼ One can also download the Bootstrap source

code, but that is not necessary; there are over 

10,000 lines of code in the Bootstrap CSS file

◼ The next slide shows the code that needs to be included 

into your HTML file to include the Bootstrap code (CSS 

and JavaScript files)

◼ Bootstrap uses jQuery and Popper

Copyright Dan Brandon, PhD, PMP

79



Links to Load Bootstrap

◼ <html>

◼ <head>

◼ <title>Welcome</title>

◼ <meta charset="utf-8">

◼ <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">

◼ <link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css" 

integrity="sha384-Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh" 

crossorigin="anonymous">

◼ </head>

◼ <body>

◼ <h1>Welcome to My Website</h1>

◼ <p>

◼ Some text…

◼ </p>

◼ <script src="https://code.jquery.com/jquery-3.4.1.slim.min.js" integrity="sha384-

J6qa4849blE2+poT4WnyKhv5vZF5SrPo0iEjwBvKU7imGFAV0wwj1yYfoRSJoZ+n" 

crossorigin="anonymous"></script>

◼ <script src="https://cdn.jsdelivr.net/npm/popper.js@1.16.0/dist/umd/popper.min.js" integrity="sha384-

Q6E9RHvbIyZFJoft+2mJbHaEWldlvI9IOYy5n3zV9zzTtmI3UksdQRVvoxMfooAo" 

crossorigin="anonymous"></script>

◼ <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/js/bootstrap.min.js" integrity="sha384-

wfSDF2E50Y2D1uUdj0O3uMBJnjuUD4Ih7YwaYd1iqfktj0Uod8GCExl3Og8ifwB6" 

crossorigin="anonymous"></script>

◼ </body>

◼ </html> Copyright Dan Brandon, PhD, PMP

80



Bootstrap Classes Reference

Copyright Dan Brandon, PhD, PMP

81



References

◼ Learn Enough CSS & Layout to Be 

Dangerous: A tutorial introduction to CSS and 

page layout (Learn Enough Web Basics) 

by Lee Donahoe and Michael Hartl

◼ Learning Web Design: A Beginner's Guide to 

HTML, CSS, JavaScript, and Web Graphics 

by Jennifer Robbins

◼ Web Design - Start Here: A No-Nonsense, 

Jargon Free Guide to the Fundamentals of 

Web Design by Stefan Mischook

Copyright Dan Brandon, PhD, PMP

82



HomeworkHomework

Textbook Chapter 3

Create another model for your homepage 

using CSS layouts and email new 

versions of HTML and CSS files


