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Session Objectives

◼ Find the least number of hops (stops) thru a network

◼ Find the shortest or cheapest path through a network 

using the shortest-route technique

◼ Connect all points of a network while minimizing total 

distance using the minimal-spanning tree technique

◼ Determine the maximum flow through a network 

using the maximal-flow technique

◼ Understand how to use LP and matrix solution 

methods to network problems
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Network Analysis & Graph Theory

◼ Problems lending themselves to 
“network analysis” have some type of 
structural relationship between 
entities which needs to be 
“optimized”

◼ Communication between people, 
computers, departments, etc.

◼ Flow of material between locations

◼ Tasks in a projects (precedence)

◼ The layout of workspaces, offices, 
manufacturing plant layout, etc.
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Network Graphs

◼ Network types of 

problems can be set up 

as mathematical 

“graphs” (the area of 

mathematics called 

“topology”)

◼ The graph has two 

kinds of elements:

◼ Nodes

◼ Edges (or arcs)

Node

Edge
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Nodes

◼ The nodes correspond to the entities needing to 

be structurally organized, such as:

◼ People in an organization

◼ Stops along a material flow

◼ Tasks in a project

◼ Computers in a network

◼ In general, the nodes are “states” in a system

◼ The nodes are generally represented as dots or 

circles
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Edges
◼ The edges (or arcs) are line segments connecting the 

nodes

◼ Logically they may be:

◼ Communication channels

◼ Traffic lanes

◼ Precedence relationships

◼ The edges can be directed, and if so, they begin at one 
node and end at another node; an arrow is shown at the 
ending node
◼ For two way communication, two edges (each with arrows) are 

shown (if all edges are “two-way”, arrows may be omitted)

◼ A “cost” may be associated with each edge, such as a 
time, distance, dollar cost, etc.
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Example Network (adjacency) Graph

If node 5 wants to talk with node 3, what is the path to use with the least connections ?

Node 1 can talk to node2

Node 2 cannot talk with node 1
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Matrix Representation

◼The graph can be represented as a 
square matrix A

◼ If node i is directed to node j, then:

◼ A[i,j] = 1 (else it is zero [or empty])

◼ If node i and j can both communicate with 
each other then:

◼ A[i,j] = 1 and A[j,i]=1

◼For a graph where the edges have costs, 
the value of the cost is used instead of a 
one

Who doesn’t

love matrices ?
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Matrix for Previous Example Graph
[this shows which nodes can talk directly with which other nodes, the rows are 

“from” and the columns are “to”]

1 1

1 1

1

1 1

1 From 5 

to 4

To

F
ro

m

8 non-zeros in matrix,

corresponding to 8

paths in graph



Draw Graph From Matrix
[https://graphonline.ru/en/create_graph_by_matrix]



Draw Graph From Matrix (con’t)

Bi-directional between

4 and 5
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Fewest Steps thru a Network

◼ If we square the matrix A, we get another 
square matrix (B) which shows which nodes 
can talk to each other in two steps (by going 
thru another intermediate node)

◼ Since:

◼ B[i,j] = SUM (A[i,k]*A[k,j]) (where the sum index is k)

◼ The number in each cell in the B matrix 
represents the number of two step links
◼ Details on next slide →



Matrix Multiplication:   A * B
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Square of a Matrix:    B = A2
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b11 = a11*a11 + a12*a21 + a13*a31 + a14*a41
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Meaning of Matrix Multiplication
[try all the ways to go from one point to another !]

◼ Matrix multiplication 
examines all combinations 
of one node related to 
another node

◼ Example, from 2 to 4:

◼ B[2,4] = Row 2 times Column 4

◼ B[2,4] = ∑ A[2,k]*A[k,4]

◼ B[2,4] = 0*0 +      {thru 1}

◼ 0*0 +      {thru 2}

◼ 1*1 +      {thru 3}

◼ 0*0 +      {thru 4}

◼ 1*1 {thru 5}

◼ B[2,4] = 2  [2 ways to go from 2 to 4]

◼ in 2 steps

To 4

From 2



Calculate the Square of this Matrix by Hand !

Hint →
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1 1

1 1

1

1 1

1



B[i,j] = row i times column j

Copyright – Dan Brandon
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◼Do not look ahead !
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Square of Network Matrix for Example Graph
[this shows which nodes can talk with each other in 2 steps, note that there are 2 ways 

node 2 can talk to node 4 in 2 steps]

1 1 1

2

1 1

1 1 1

1 1



Using Excel for Matrix 

Multiplication

21

Matrix to be Squared



Function MMULT

22



Excel Matrix Multiplication

23

Same range for Array1 and Array2 for square operation.



NOTE: After highlighting all the resulting matrix cells, press F2, and then 

press CTRL+SHIFT+ENTER. If the formula is not entered as an array 

formula, only a single result cell will have a value.
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Excel Matrix Multiplication (con’t)

◼ Click in the cell where you want the resulting matrix to 

appear (upper left corner cell)

◼ Hit the Fx (insert function button)

◼ Select MMULT, hit OK

◼ Highlight the range for Array1, hightlight the range for 

Array 2 (same for matrix square operation)

◼ Hit OK

◼ To expand the single value in the resulting cell: select 

the range for the resulting matrix (rows and columns), 

hit F2 (Ctrl-U on Mac), hit Ctrl+Shift+Enter

25



Calculate the Square of this Matrix via Excel !
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1 1

1 1

1

1 1

1

Click in the cell where you want the resulting matrix to appear (upper left corner cell)

Hit the Fx (insert function button)

Select MMULT, hit OK

Highlight the range for Array1, hightlight the range for Array 2 (same for square operation)

Hit OK

To expand the single value in the resulting cell: select the range for the resulting matrix 

(rows and columns), hit F2, hit Ctrl+Shift+Enter
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◼Do not look ahead !



Excel Results
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Communication Matrix

◼ The N’th power of the network matrix (A) will 
show which nodes can talk to which other 
nodes in N steps

◼ Thus if we keep taking higher powers of the 
network matrix (up to the size of the matrix 
minus 1) we can see how long it will take for 
any two nodes to communicate (some pairs 
may never communicate)

◼ Then we can build a “communication matrix” 
[C] which shows for C[i, j] how many steps it 
takes to go from node i to node j



30

Communication Matrix for Previous Example
[each cell is the least steps path from i to j]

1 1 2 2

3 1 2 1

2 3 1 2

1 2 2 1

2 3 3 1



Takes 3 steps to go from 2 to 1…
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Building the Communications Matrix

◼ To get the Communication matrix you have to take at 

most A^N-1 powers ( where N is number of nodes)

◼ All nodes might be able to reach each other in less 

steps, as was the case with the example here

◼ The Comm matrix starts out as the A matrix

◼ then you take A^2, and any non-zeros in A^2 that are not 

already in the Comm matrix go in as 2's

◼ then you take A^3, and any non-zeros in A^3 that are not 

already in the Comm matrix go in as 3's

◼ and so on...
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Calculation of Communication Matrix via Excel

non-zeros in A^2 that are 

not already in the Comm 

matrix go in as 2's

non-zeros in A^3 that are 

not already in the Comm 

matrix go in as 3's



Calculation of Communication Matrix via 

Excel (con’t)
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Communication Metadata

◼ Network analysis to 

examine telephone, text 

message, and computer 

communication 

metadata

◼ Used by Homeland 

Security, NSA, law 

enforcement, etc.

◼ Courts have upheld that 

metadata is public (no 

subpoena necessary)

Copyright – Dan Brandon
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Shortest/cheapest Route Technique

◼ The shortest-route technique finds how a 

person or vehicle can travel from one location 

to another while minimizing the total distance 

or time traveled

◼ This is different from the TSP in that there is a 

fixed network, one cannot travel from any 

point to any other point

◼ It finds the shortest route to a series of 

destinations



Shortest/cheapest Route Technique 

(con’t)

◼ A company transports 

items from the factory to 

the warehouse

◼ They would like to find the 

route with the shortest 

distance

◼ The road network is 

shown in the following 

figure
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Shortest-Route Technique (con’t)

◼ Roads (with mileage) from plant to warehouse

Plant

Warehouse

50

40

200

1501

2

3

4

5

6



Shortest-Route Technique (con’t)

◼ Steps of the shortest-route heuristic 

technique:

1. Find the nearest node to the origin (plant). Put 

the distance in a box by the node.

2. Find the next-nearest node to the origin and put 

the distance in a box by the node. Several paths 

may have to be checked to find the nearest node.

3. Repeat this process until you have gone through 

the entire network. The last distance at the 

ending node will be the distance of the shortest 

route. 



Shortest-Route Technique (con’t)

◼ We can see that the nearest node to the plant is 

node 2

◼ We connect these two nodes

◼ After investigation, we find node 3 is the next nearest 

node but there are two possible paths

◼ The shortest path is 1–2–3 with a distance of 150



Shortest-Route Technique (con’t)

◼ We repeat the process and find the next node 

is node 5 by going through node 3

◼ The next nearest node is either 4 or 6, and 6 

turns out to be closer

◼ The shortest path is 1–2–3–5–6 with a 

distance of 290 miles
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Shortest-Route Technique (con’t)

◼ First iteration

Plant

Warehouse

50

40

200

1501

2

3

4

5

6

100



Shortest-Route Technique (con’t)

◼ Second iteration

Plant

Warehouse

50

40

200

1501

2

3

4

5

6

100

150



Shortest-Route Technique (con’t)

◼ Third iteration

Plant

Warehouse

50

40

200

1501

2

3

4

5

6

100

150 190



Shortest-Route Technique (con’t)

◼ Fourth and final iteration

Plant

Warehouse

50

40

200

1501

2

3

4

5

6

100

150 190

290



Shortest-Route Technique via LP 

(solver) in Excel QM
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Shortest-Route Technique (con’t)
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Shortest-Route Technique (con’t)
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Matrix Solution to Cheapest 

Routes

◼Shortest route problems can also 

be found by matrix techniques as 

well as via the shortest route 

heuristic and via linear 

programming
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Example Network with Costs (or distance)

[4 nodes and 6 edges]

We need to

find the least

cost route from

node 1 to node 4.

What is that 

route ?
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Matrix Representation of Cost Network
[One Step Costs] {i.e. 1 to 4 directly cost 10}

4 6 10

1 7

3
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Least Cost thru a Network

◼ If we “square@” the matrix A, we get 
another square matrix (B) which shows 
the cost to move from node to node in 
two steps (by going thru another [1] 
intermediate node)

◼The square@ operation (“minimum of 
squares”):

◼B[i,j] = MIN (A[i,k]+A[k,j])
◼ (where the min index is k)
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Matrix Minimum of Squares Operation

◼The “minimum of squares” operation is 
just like matrix multiplication except we 
use the minimum operator instead of 
the sum operator (and add instead of 
multiply the edges, where both terms 
are non-zero)

◼The number in each cell in the B matrix 
represents the least cost of any two 
step links between those two nodes



Exercise: Calculate A @A

Copyright – Dan Brandon

@

B[i,j] = MIN (A[i,k]+A[k,j])
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◼Do not look ahead !



B[i,j] = MIN (A[i,k]+A[k,j])

Copyright – Dan Brandon

@

B1,3 = min (A1,1 + A1,3; A1,2 + A2,3; A1,3 + A3,3; A1,4 + A4,3)

= min (NA ; 5 ; NA ; NA)

= 5
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Min Two Step Costs (A @ A = B)
[the min is 9 from 1 to 4]

5 9

4



Min Three Step Costs (A @ B = C)

8

(i.e. the least cost 3 step move from 1 to 4 is at a cost of 8)
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Least Cost thru a Network (con’t)

◼ After we do N-1 @ operations (for N nodes), 
then we can look thru each of the resulting N-1 
matrices to find the least cost move between 
any two points, since the least cost move might 
be a 1 step move, 2 step move, …, or a N-1 
step move

◼ If we save the “detail” of the @ function in 
separate matrices for each steps, we can save 
the actual routes that give us those minimum 
costs

◼ The order of computation here is N to the 4’th 
power, since it takes N cubed operations to do 
the square@ operation between 2 matrices



Minimal-Spanning Tree Technique

◼ The minimal-spanning tree technique involves 

connecting all the points of a network together 

minimizing the distance of the connecting 

lines

◼ Example:

◼ A construction company is developing a 

housing project

◼ They want to determine the least expensive 

way to provide utilities each house

◼ There are 8 houses in the project and the 

distance between them is shown in the figure



Minimal-Spanning Tree Technique 

(con’t)

◼ Network for construction company

3

3

2

3

2

4

2

5

6

7

1

5

1

2

3

4

5

6

7

8

3

Gulf



Minimal-Spanning Tree Technique 

(con’t)

◼ Steps for the minimal-spanning tree 

heuristic:

1. Select any node in the network

2. Connect this node to the nearest node that 

minimizes the total distance

3. Considering all the nodes that are now 

connected, find and connect the nearest 

node that is not connected. If there is a tie, 

select one arbitrarily. A tie suggests there 

may be more than one optimal solution.

4. Repeat the third step until all nodes are 

connected



Minimal-Spanning Tree Technique 

(con’t)

◼ Start by arbitrarily selecting node 1

◼ The nearest node is node 3 at a distance of 2 (200 

feet) and we connect those nodes

◼ Considering nodes 1 and 3, we look for the next 

nearest node

◼ This is node 4, the closest to node 3

◼ We connect those nodes



◼ We now look for the nearest unconnected 

node to nodes 1, 3, and 4

◼ This is either node 2 or node 6

◼ We pick node 2 and connect it to node 3

Copyright – Dan Brandon
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Minimal-Spanning Tree Technique 

(con’t)

◼ Following this same process we connect 

from node 2 to node 5

◼ We then connect node 3 to node 6

◼ Node 6 will connect to node 8

◼ The last connection to be made is node 8 

to node 7

◼ The total distance is found by adding up 

the distances in the arcs used in the 

spanning tree

2 + 2 + 3 + 3 + 3 + 1 + 2 = 16 (or 1,600 feet)



Minimal-Spanning Tree Technique 

(con’t)

◼ After all iterations 

3

3

2

3

2

4

2

5

6

7

1

5

1

2

3

4

5

6

7

8

3

Gulf



Maximal-Flow Technique

◼ The maximal-flow technique allows us to 

determine the maximum amount of a material 

that can flow through a network

◼ Example:

◼ Waukesha Wisconsin is in the process of developing a 

road system for the downtown area

◼ They want to determine the maximum number of cars 

that can flow through the town from west to east

◼ The road network is shown in the following figure 

◼ The numbers by the nodes indicate the number of cars 

that can flow from the node



Maximal-Flow Technique (con’t)

◼ Road network (not symmetric)

Capacity in Hundreds of 
Cars per Hour

West 
Point

East 
Point

10

0 2

1
3

1

1

1

2

2
1

3

6

0
2

0 1

1

1

2

3

4

5

6



Maximal-Flow Technique (con’t)

◼ Four steps of the Maximal-Flow heuristic:

1. Pick any path from the start (source) to 

the finish (sink) with some flow. If no path 

with flow exists, then the optimal solution 

has been found.

2. Find the arc on this path with the smallest 

flow capacity available. Call this capacity 

C. This represents the maximum 

additional capacity that can be allocated 

to this route.



Maximal-Flow Technique (con’t)

◼ Four steps of the Maximal-Flow Technique

3. For each node on this path, decrease the 

flow capacity in the direction of flow by the 

amount C. For each node on the path, 

increase the flow capacity in the reverse

direction by the amount C.

4. Repeat these steps until an increase in 

flow is no longer possible



Maximal-Flow Technique (con’t)

◼ We start by arbitrarily picking the path 1–2–6 which is at 

the top of the network

◼ The maximum path flow is 2 units from node 2 to node 6

◼ The path capacity is adjusted by adding 2 to the 

westbound flows and subtracting 2 from the eastbound 

flows (the units subtracted will accumulate to the maximum flow)

◼ The result is the new path in the following figure which 

shows the new relative capacity of the path at this stage

W
E



Maximal-Flow Technique (con’t)

◼ Capacity adjustment for path 1–2–6 iteration 1
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Maximal-Flow Technique (con’t)

◼ We repeat this process by picking the path 1–2–4–6

◼ The maximum capacity along this path is 1

◼ The path capacity is adjusted by adding 1 to the 

westbound flows and subtracting 1 from the 

eastbound flows



Maximal-Flow Technique (con’t)

◼ Second iteration for Waukesha road system
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Maximal-Flow Technique (con’t)

◼ We repeat this process by picking the path 1–

3–5–6

◼ The maximum capacity along this path is 2
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Maximal-Flow Technique (con’t)

◼ Third and final iteration for Waukesha road system
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Maximal-Flow Technique (con’t)

◼ There are no more paths from nodes 1 to 6 with 

unused capacity so this represents a final iteration

◼ The maximum flow through this network is 500 cars 

(the sum of the amounts subtracted out) 

PATH FLOW (CARS PER HOUR)

1–2–6 200

1–2–4–6 100

1–3–5–6 200

Total 500



Maximal-Flow via LP & QM
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Maximal-Flow Technique (con’t)
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Sparse Matrices

◼ Most Matrices developed in “real world” 
algorithms and applications are characterized 
by the fact that most of the cells are empty or 
have zero values

◼ As the problem size increases, the cost of using 
traditional matrix algebra becomes very expensive

◼ For example, matrix multiplication operations are of 
order N cubed (3 nested loops)

◼ The field of “sparse matrix algebra” is concerned with 
the development of efficient data structure algorithms for 
matrix operations
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Sparse Matrices (con’t)

◼ In sparse matrix algebra, only non-zero matrix 

elements are stored and operated upon

◼ For example, matrix multiplication can be done 

in an order of N*NZ (instead of N*N*N) where 

NZ is the number of non-zero elements in the 

matrix

◼ The most efficient Quant systems use this type 

of matrix algebra ! (Microsoft Excel is not in this 

category)
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Full Matrix Storage for Previous Example 

Graph

0 1 1 0 0

0 0 1 0 1

0 0 0 1 0

1 0 0 0 1

0 0 0 1 0
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Sparse Representation of Data
[in cases where the costs are 1, A need not be stored at all !]

◼ A JA CUMA
◼ 1 2 2

◼ 1 3 4

◼ 1 3 5

◼ 1 5 7

◼ 1 4 8

◼ 1 1

◼ 1 5

◼ 1 4
JA and CUMA are integer

vectors, and A is a real vector
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Parallel and Vector Computers

◼ Some specialized scientific computers utilize 
either vector and/or parallel computation to 
minimize the time to do matrix type calculations

◼ Vector processors allow one computer 
hardware instruction to do vector/matrix 
computations by “massive pipelining”

◼ Parallel computation uses a large number of 
processors to do a single matrix operation

◼ Both of these special types of computers require 
special software algorithms designed to operate 
on full and/or sparse matrices



Cray Supercomputers
[http://www.cray.com/]
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HPE Cray EX “Frontier”

◼ The US is on top of the supercomputing world in the 

Top500 ranking of the most powerful systems (May 2022)

◼ The Frontier system from Oak Ridge National Laboratory 

(ORNL) running on AMD EPYC CPUs took first place 

from last year's champ, Japan's ARM A64X Fugak

◼ Frontier, powered by Hewlett Packard Enterprise's (HPE) 

Cray EX platform, was the top machine by a wide margin

◼ It's the first (known) true exascale system, hitting a peak 

1.1 exaflops on the Linmark benchmark (1 quintillion 

calculations per second)

◼ Fugaku, meanwhile, managed less than half that at 442 

petaflops, which was still enough to keep it in first place 

for the previous two years
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HPE Cray EX “Frontier” (con’t)



88

Dynamic Programming

◼ The problem of finding the least costly or 

shortest path can be extended where the path 

may be one in time and/or space (an N 

dimensional graph)

◼ Dynamic programming is a method for finding 

the best sequence of “activities” or “events”

◼ A common problem is finding the most EOQ 

(economical order quantity) when the future 

demand is known but is not constant (such as 

demands with trends and seasonal variations)
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Dynamic Programming (con’t)

◼ Dynamic programming algorithms use similar 
matrix manipulations and are based upon:

◼ Embedding – we will find the functions of 
objective points (i.e. EOQ’s over time) that 
provides the lowest overall cost by solving the 
general problem for all EOQ’s at all the points in 
time

◼ For example, in the shortest-route problems, we 
found the value of the best route thru every node 
in the network as a means for finding the best 
route from node 1 to another specific node

◼ Textbook online module M2
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Homework

◼Textbook Sections 9.5 – 9.7, 
online module 8

◼Quiz on network models

◼Project Nine →
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Project 9

◼ Paula Broadmind maintains a clandestine 

connection of contacts, some of whom can 

communicate directly with each other and some of 

whom she does not trust to directly communicate 

with each other due to likely wiretaps

◼ Her network matrix is shown on the following slide

◼ Build the communication matrix showing the 

minimum number of steps it takes each node to 

communicate with another

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=j2FUtEHcAw2YBM&tbnid=EKEoxy5fnqWJnM:&ved=0CAUQjRw&url=http://www.theblaze.com/stories/2012/11/13/oops-denver-news-station-airs-photoshopped-paula-broadwell-book-title-all-up-in-my-snatch/&ei=xrdAUvOHKoei2QW9jYDABg&bvm=bv.52434380,d.b2I&psig=AFQjCNFX3St0qWAChZFh_9fMT6eCQoYaqw&ust=1380059209781598
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