

Management Science

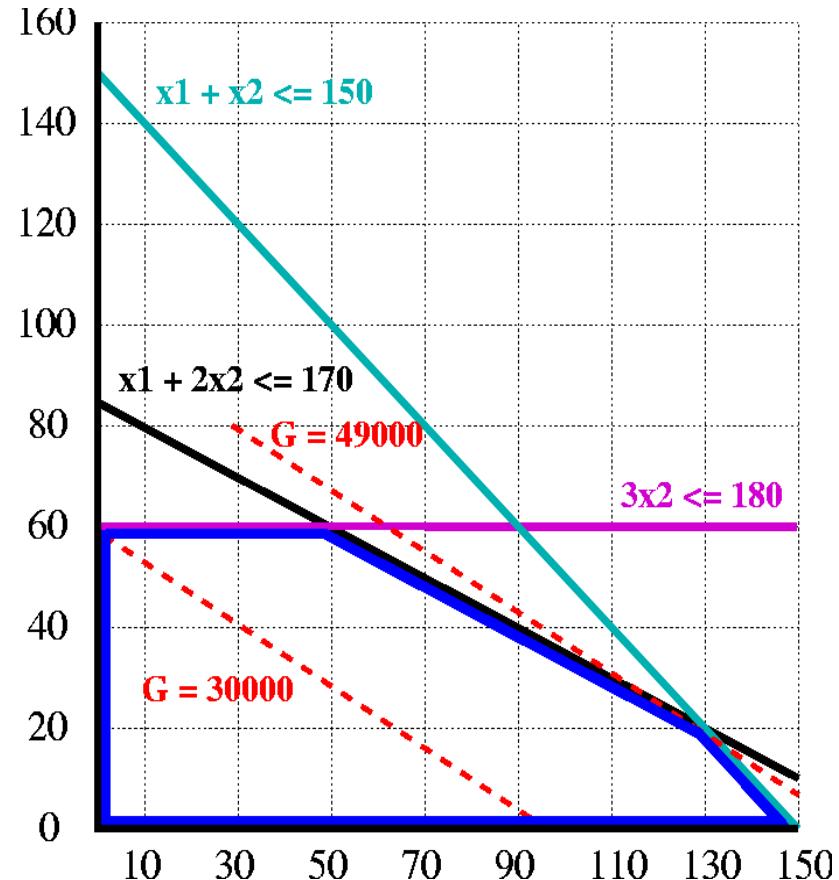
Integer and Mixed

Programming

Dan Brandon, Ph.D., PMP

LP Problems Today

Today the main difficulty is formulating the LP problem, not in solving it !!!



Packing Problem

- In this type of problem we have to pack a number of items into a number of physical or logical spaces
- We want to optimize the number of items or the value of the items packed into the spaces
- There are constraints on how much can be packed into the spaces based on characteristics of the “items” and characteristics of the “space”

Capacity of Plane

Space	Weight Capacity (tons)	Volume Capacity (cu ft)
Forward Hold	75	4000
Main Hold	150	10000
Aft Hold	50	7000

Available Cargo

[which should we take none of, which should we take all of]

Cargo	Tons	Cu ft/ton	\$/ton
Memory Chips	200	60	800
NIC's	100	48.6	600
Monitors	500	4.1 (dense)	200 (cheap)
Mother Boards (w cpu)	50	240 (bulky)	2500 (expensive)

- What are the variables ?
- What is the objective function ?
- What are the constraints ?

■ Do not look ahead !

Variables

Let:

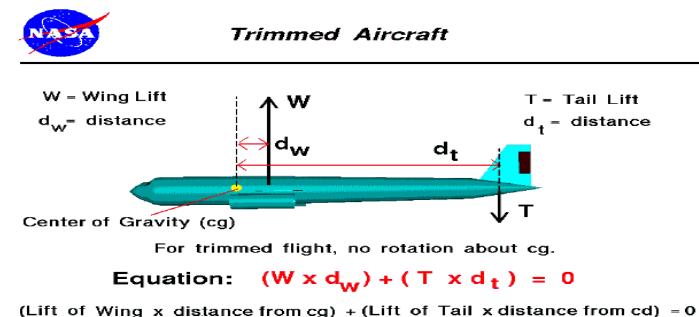
- W = tons of memory chips
- X = tons of NIC's
- Y = tons of monitors
- Z = tons of mother boards

Objective Function

- Objective function to **maximize**:
 - $Z = 800 W + 600 X + 200 Y + 2500 Z$

Constraints

- Availability of cargo (supply)
- Weight of each hold
- Capacity (volume) of each hold
- What if we do not load the holds “evenly” by weight ?

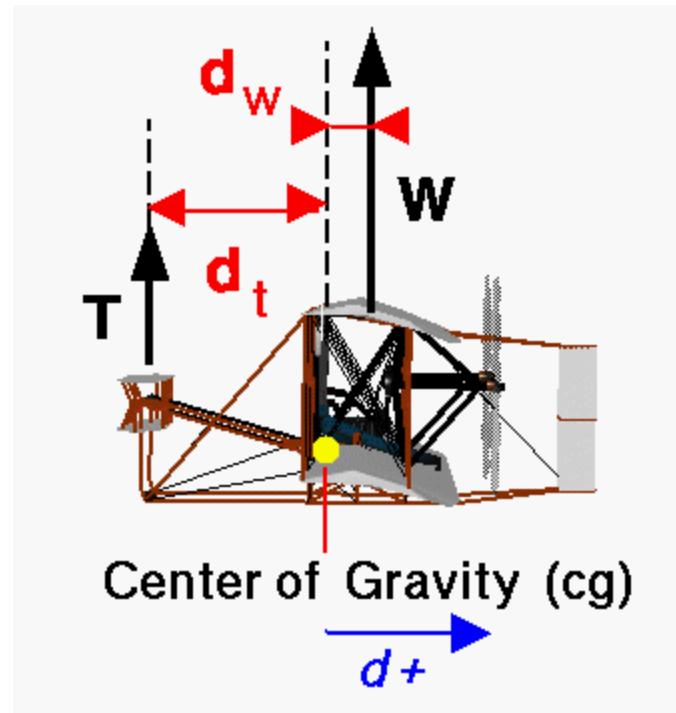


■ Do not look ahead !

Distribution Variables

■ More variables:

- $WF = W$ in forward hold (chips in forward hold)
- $WC = W$ in main hold
- $WA = W$ in aft hold
- Similarly for other items:
 - XF, XC, XA
 - YF, YC, YA
 - ZF, ZC, ZA



Distribution Constraints

- $W = WF + WC + WA$
- $X = XF + XC + XA$
- $Y = YF + YC + YA$
- $Z = ZF + ZC + ZA$

Trim Constraints

- The ratio of the weight of the cargo stored in each hold to that hold's maximum weight must be equal across all three holds !
- $(WF + XF + YF + ZF)/75 = (WC + XC + YC + ZC)/150$
- $(WA + XA + YA + ZA)/50 = (WC + XC + YC + ZC)/150$

Supply Constraints

- $W \leq 200$ (chips)
- $X \leq 100$ (NIC's)
- $Y \leq 500$ (monitors)
- $Z \leq 50$ (boards)

Weight Constraints

- $WF + XF + YF + ZF \leq 75$ (forward)
- $WC + XC + YC + ZC \leq 150$ (center)
- $WA + XA + YA + ZA \leq 50$ (aft)

Volume Constraints

- $60 \text{ WF} + 48.6 \text{ XF} + 4.1 \text{ YF} + 240 \text{ ZF} \leq 4000$ (forward)
- $60 \text{ WC} + 48.6 \text{ XC} + 4.1 \text{ YC} + 240 \text{ ZC} \leq 10000$ (center)
- $60 \text{ WA} + 48.6 \text{ XA} + 4.1 \text{ YA} + 240 \text{ ZA} \leq 7000$ (aft)

Excel Solution

Solver

[no NIC's, all the memory chips]

Packing Problem

	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V
1																						
2																						
3																						
4	Decision variables:	W	X	Y	Z	WF	WC	WA	XF	XC	XA	YF	YC	YA	ZF	ZC	ZA					
5	units	200	0	38	37	56	144	0	0	0	0	17	0	21	2.5	5.6	29					
6																						
7	Objective function:																	Total Profit				
8	profit per unit	800	600	200	2500													\$259,750.95				
9																						
10	Constraints:																		Lhs	Type	Rhs	Units
11	Define W	-1				1	1	1										-2.84217E-14	=	0	tons	
12	Define X		1						-1	-1	-1							0	=	0	tons	
13	Define Y			1																		
14	Define Z				1																	
15	Trim 1					2	-1															
16	Trim 2						1															
17	Forward Hold Limit							1														
18	Main Hold Limit								1													
19	Aft Hold Limit																					
20	W supply	1																				
21	X supply		1																			
22	Y supply			1																		
23	Z supply				1																	
24	Fwd vol limit					60																
25	Cnt vol limit						60															
26	Aft vol limit																					
27																						
28																						
29																						
30																						
31																						

Solver Parameters

Set Target Cell: \$R\$8

Equal To: Max Min Value of: 0

By Changing Cells: \$B\$5:\$Q\$5

Subject to the Constraints:

- \$R\$11:\$R\$16 = \$T\$11:\$T\$16
- \$R\$17:\$R\$26 <= \$T\$17:\$T\$26

Buttons:

- Solve
- Close
- Options
- Reset All
- Help
- Add
- Change
- Delete

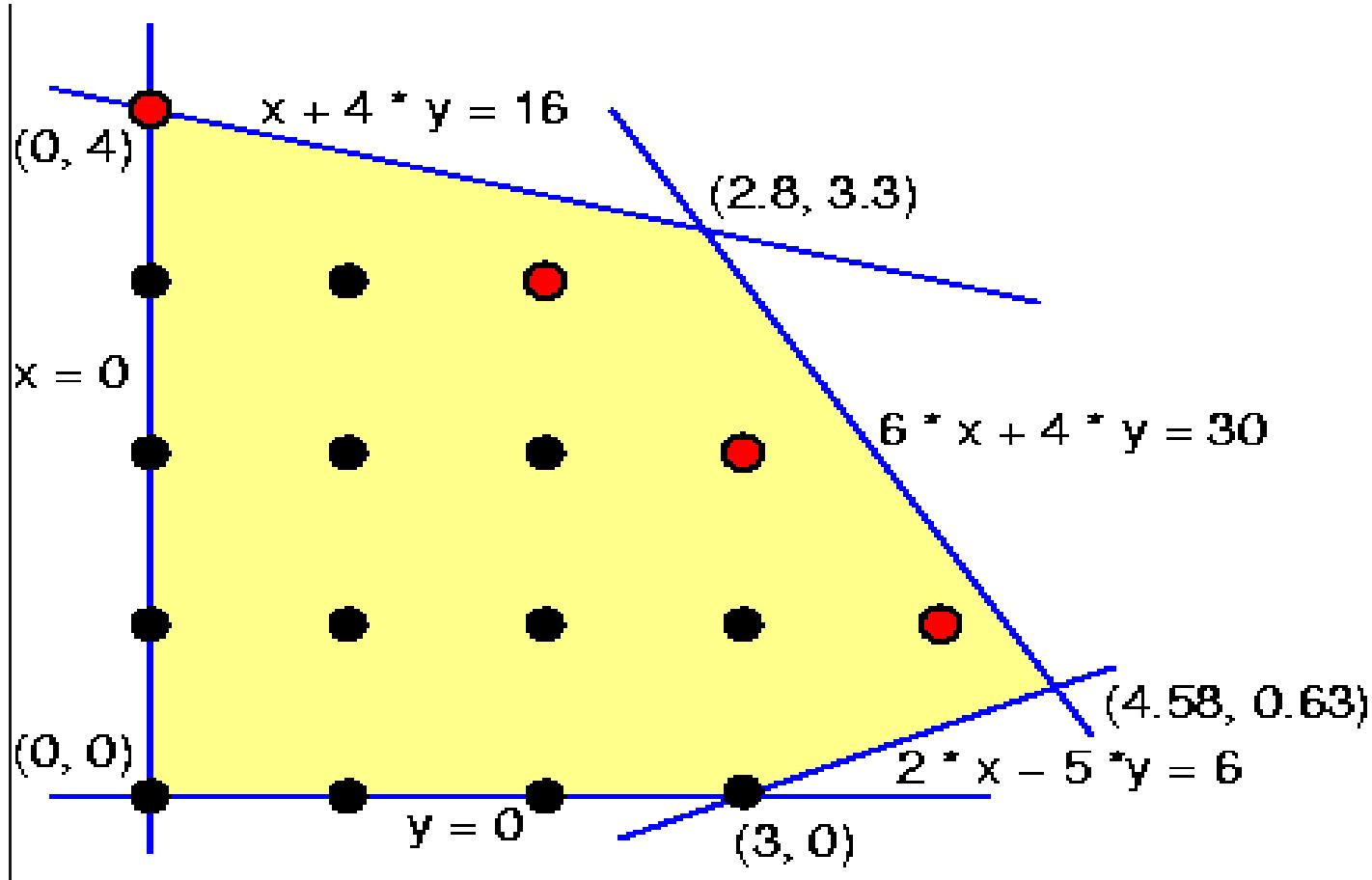
Integer Programming

- An integer programming model is one where one or more of the decision variables has to take on an integer value in the final solution
- There are three types of integer programming problems
 1. Pure integer programming where all variables have integer values
 2. Mixed-integer programming where some but not all of the variables will have integer values
 3. Zero-one integer (binary programming) are special cases in which all the decision variables must have integer solution values of 0 or 1

Integer Programming (con't)

- Solving an integer programming problem is much more difficult than solving an LP problem
- Even the fastest computers can take an excessively long time to solve big integer programming problems
- There are a number of methods for solving integer programming problems, and a common technique used to solve integer programming problems is the **branch and bound method**
- There may be multiple solutions to integer programming problems

Integer Programming (con't)



Example of Integer Programming

- A company produces two products popular with home renovators: old-fashioned chandeliers and ceiling fans
- Both the chandeliers and fans require a two-step production process involving wiring and assembly
- It takes about 2 hours to wire each chandelier and 3 hours to wire a ceiling fan
- Final assembly of the chandeliers and fans requires 6 and 5 hours respectively
- The production capability is such that only 12 hours of wiring time and 30 hours of assembly time are available

Example of Integer Programming (con't)

- Each chandelier produced nets the firm \$7 and each fan \$6
- What are the variables ?
- What are the constraints ?

■ Do not look ahead !

Example of Integer Programming (con't)

- This “production mix” decision can be formulated using LP as follows:

Maximize profit = $\$7X_1 + \$6X_2$
subject to $2X_1 + 3X_2 \leq 12$ (wiring hours)
 $6X_1 + 5X_2 \leq 30$ (assembly hours)
 $X_1, X_2 \geq 0$ (nonnegative)

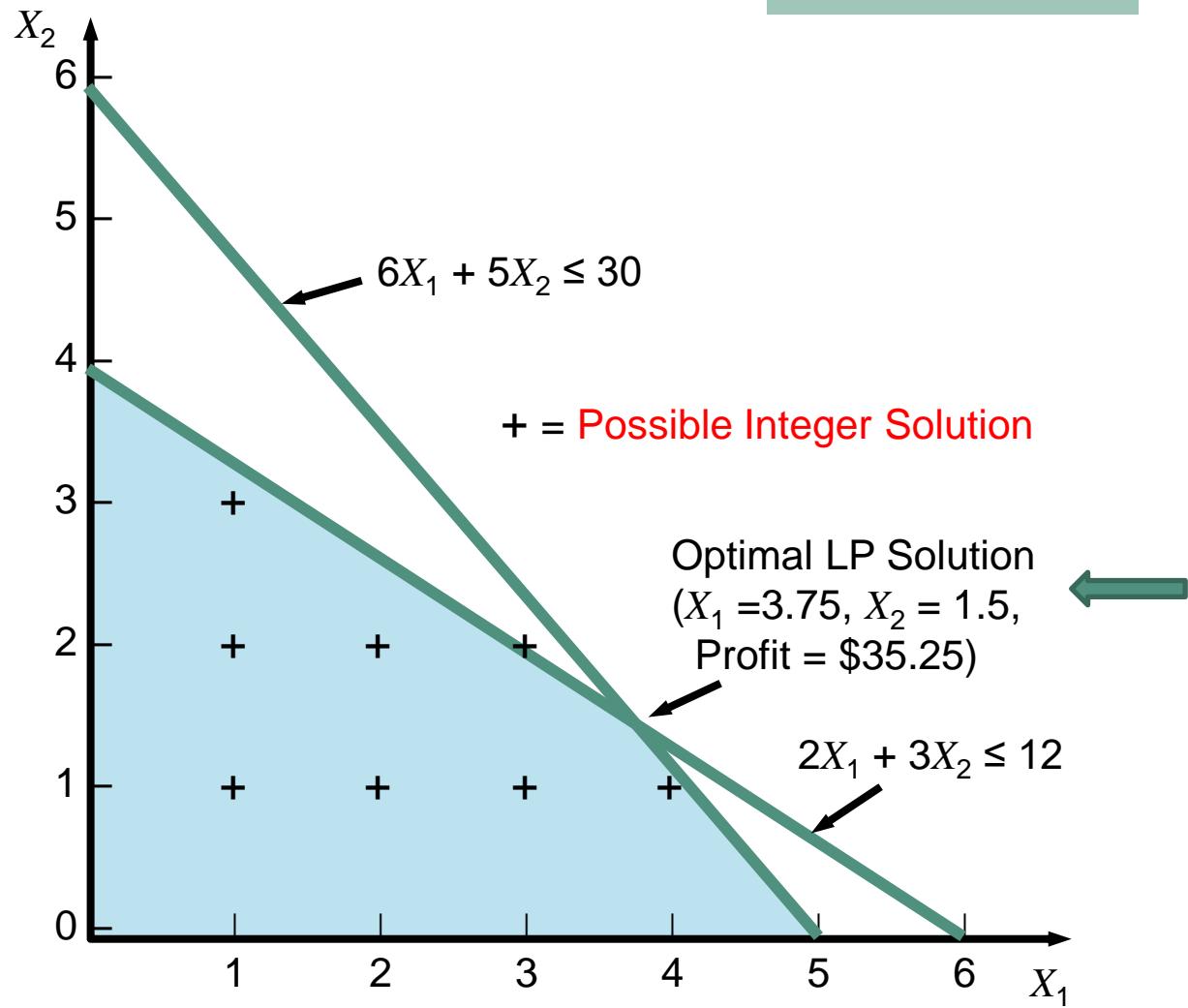
where

X_1 = number of chandeliers produced, must be an integer
 X_2 = number of ceiling fans produced, must be an integer

■ How could we approach solving this problem ?

■ Do not look ahead !

Example of Integer Programming (con't)



Example of Integer Programming (con't)

- A first attempt at solving may be to round the optimal values to $X_1 = 4$ and $X_2 = 2$
- However, this is outside of the feasible area
- Rounding X_2 down to 1 gives a feasible solution, but it may not be *optimal*
- This could be solved using an *enumeration* method
- Enumeration is generally not feasible for large problems

Enumeration For Integer Programming

CHANDELIERS (X_1)	CEILING FANS (X_2)	PROFIT (\$ $7X_1 + 6X_2$)	Integer solutions
0	0	\$0	
1	0	7	
2	0	14	
3	0	21	
4	0	28	
5	0	35	Optimal solution to integer programming problem
0	1	6	
1	1	13	
2	1	20	
3	1	27	
4	1	34	
0	2	12	
1	2	19	
2	2	26	
3	2	33	
0	3	18	
1	3	25	
0	4	24	

Example of Integer Programming (con't)

- The optimal integer solution of $X_1 = 5$, $X_2 = 0$ gives a profit of \$35
- The optimal integer solution (35) is less than the optimal LP solution (35.25)
- An integer solution can *never* be better than the LP solution and is *usually* a lesser solution

Example of Integer Programming (con't)

	A	B	C	D	E	F	G
1							
2			X1	X2			
3	Solution	0	0				
4	Con 1	2	3	$=$C$3*C4 + D3*D4$	12	\leq	
5	Con 2	6	5	$=$C$3*C5 + D3*D5$	30	\leq	
6	Objective	7	6	$=$C$3*C6 + D3*D6$			MAX
7							
8							
9							

Example of Integer Programming (con't)

	A	B	C	D	E	F	G	H	I	J	K	L	M
1													
2				X1	X2								
3	Solution			0	0								
4	Con 1			2	3	0	12	<=					
5	Con 2			6	5	0	30	<=					
6	Objective			7	6	0		Min					
7													
8													
9													
10													
11													
12													
13													
14													
15													
16													
17													
18													
19													
20													
21													

The screenshot shows an Excel spreadsheet and the Solver Parameters dialog box. The spreadsheet has columns A-M and rows 1-21. Row 2 contains headers X1 and X2. Row 3 is labeled Solution with values 0 and 0. Row 4 is labeled Con 1 with values 2, 3, 0, and 12 <=. Row 5 is labeled Con 2 with values 6, 5, 0, and 30 <=. Row 6 is labeled Objective with values 7, 6, 0, and Min. A red box highlights cell E6. A green arrow points from the text "Subject to the Constraints:" in the Solver dialog to the constraint list in the dialog box. The Solver Parameters dialog box shows the target cell \$E\$6, set to Max. The changing cells are \$C\$3:\$D\$3. The constraints listed are \$C\$3:\$D\$3 = integer, \$C\$3:\$D\$3 >= 0, \$E\$4 <= \$F\$4, and \$E\$5 <= \$F\$5.

For integer problems, one still chooses the “simplex” method in Excel, Excel will automatically switch over to the “branch and bound” method

Example of Integer Programming (con't)

	A	B	C	D	E	F	G	H	I	J	K	L	M
1													
2				X1	X2								
3	Solution			5	0								
4	Con 1			2	3	10	12	<=					
5	Con 2			6	5	30	30	<=					
6	Objective			7	6	35		Min					
7													
8													
9													
10													
11													
12													
13													
14													
15													
16													
17													
18													
19													

A screenshot of a Microsoft Excel spreadsheet and a Solver Results dialog box. The spreadsheet shows a linear programming problem with variables X1 and X2, subject to constraints Con 1 and Con 2, and an objective function. The Solver Results dialog box indicates that a solution has been found, and the 'Keep Solver Solution' option is selected.

Solver Results

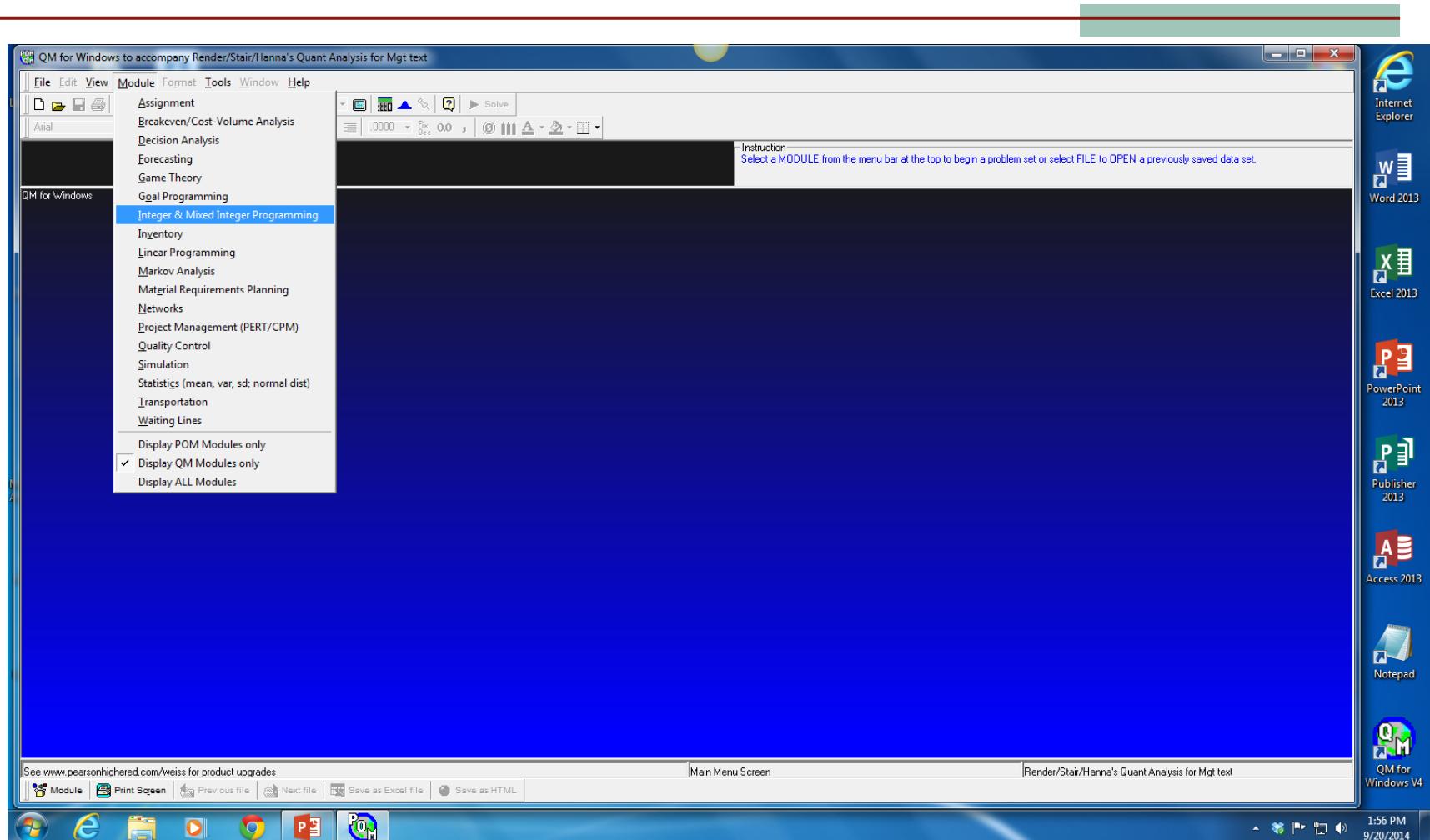
Solver found a solution. All constraints and optimality conditions are satisfied.

Keep Solver Solution

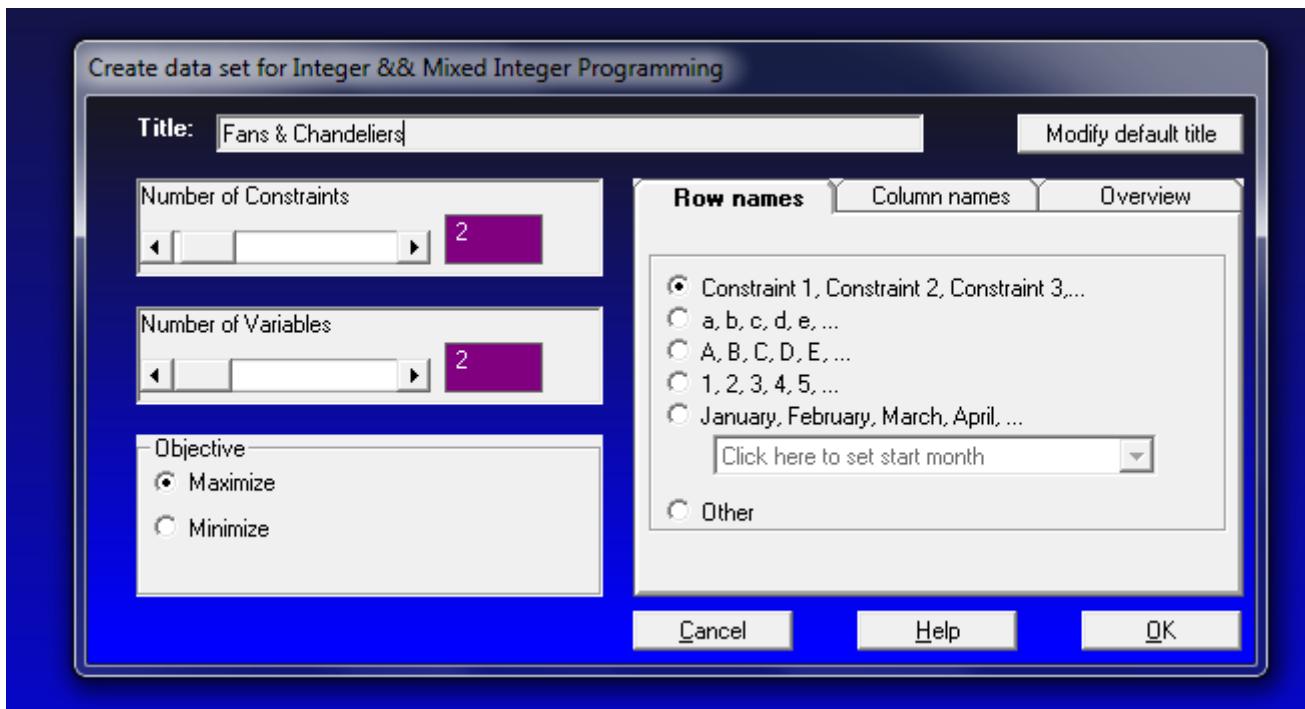
Restore Original Values

OK Cancel Save Scenario... Help

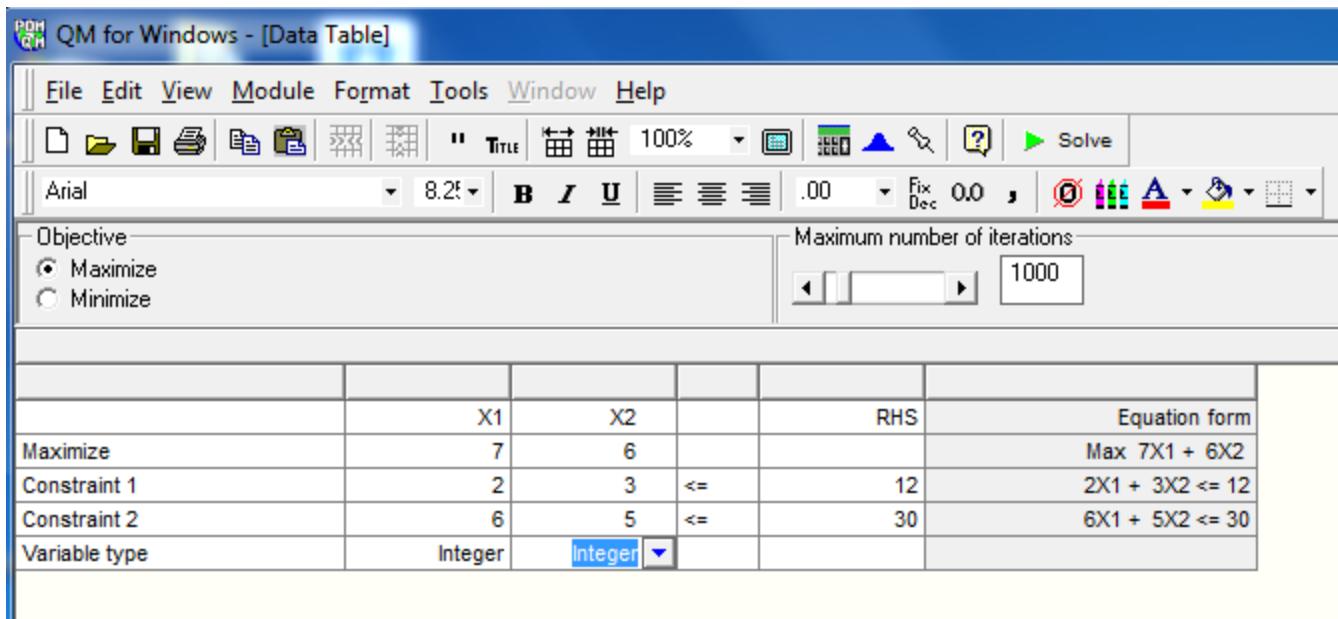
Using QM...



Using QM...



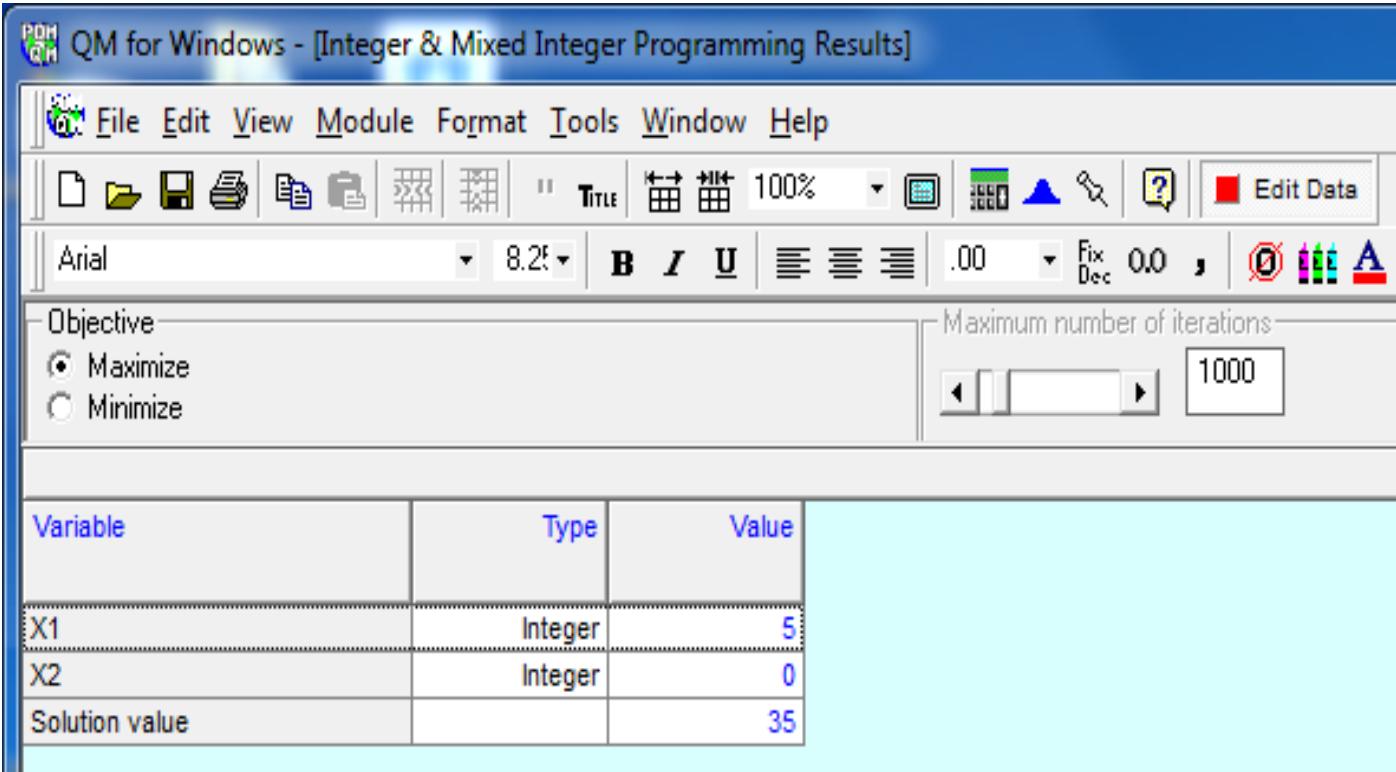
Using QM...



The screenshot shows the QM for Windows software interface. The menu bar includes File, Edit, View, Module, Format, Tools, Window, and Help. The toolbar includes icons for file operations, a title bar, and a solve button. The font is set to Arial at 8.2pt, and the style includes bold, italic, and underline. The objective function is set to Maximize, and the maximum number of iterations is 1000. The data table is as follows:

	X1	X2		RHS	Equation form
Maximize	7	6			Max 7X1 + 6X2
Constraint 1	2	3	<=	12	2X1 + 3X2 <= 12
Constraint 2	6	5	<=	30	6X1 + 5X2 <= 30
Variable type	Integer	Integer			

Using QM...



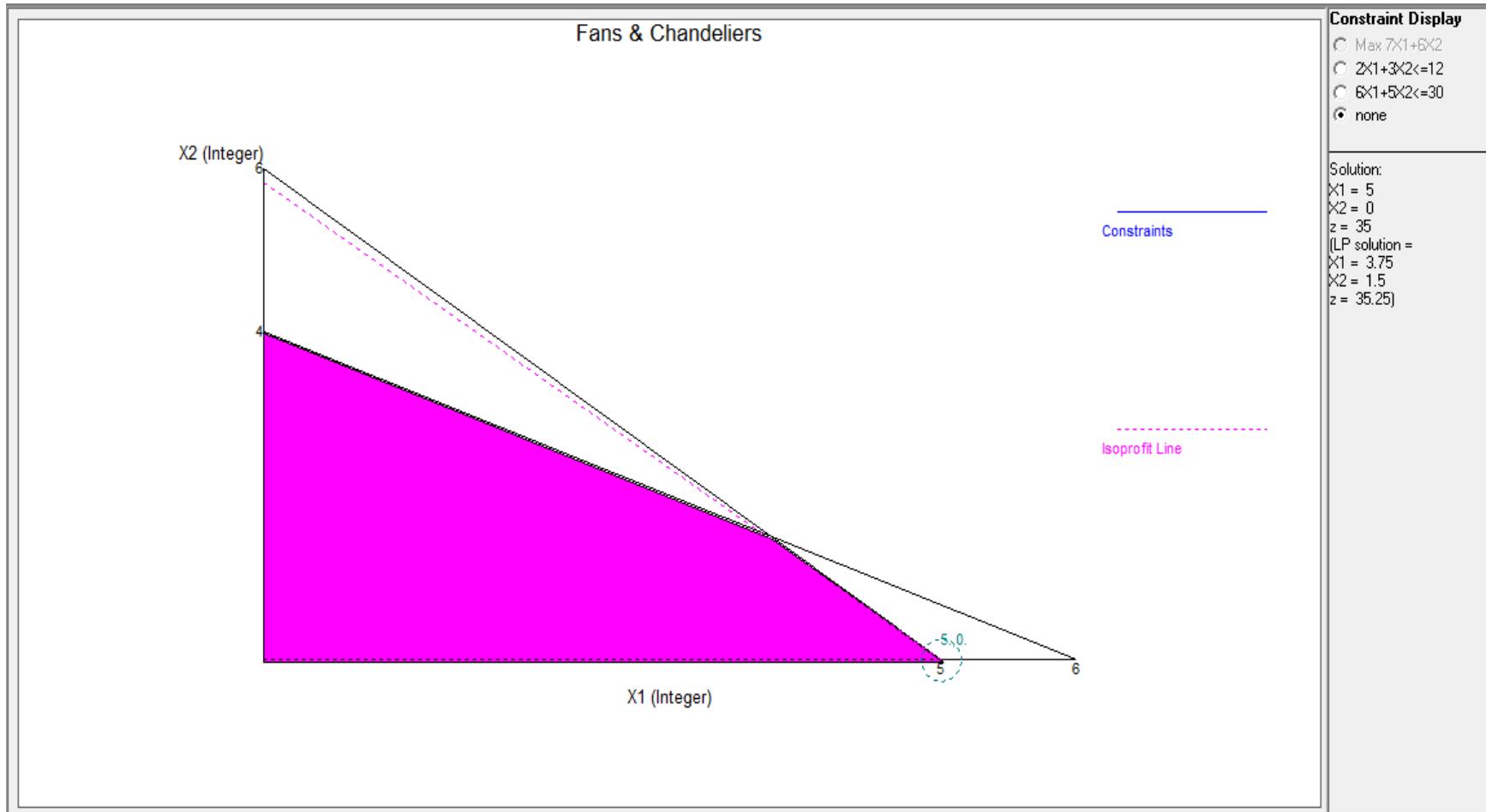
The screenshot shows the QM for Windows software interface. The title bar reads "QM for Windows - [Integer & Mixed Integer Programming Results]". The menu bar includes File, Edit, View, Module, Format, Tools, Window, and Help. The toolbar contains icons for file operations like Open, Save, Print, and a magnifying glass. The font toolbar shows "Arial" and "8.25". The toolbar also includes buttons for bold (B), italic (I), underline (U), and alignment. The "Edit Data" button is highlighted in red. The main window displays the following settings:

- Objective:** Radio buttons for "Maximize" (selected) and "Minimize".
- Maximum number of iterations:** A slider and a text input field showing "1000".

Below these settings is a table showing the results:

Variable	Type	Value
X1	Integer	5
X2	Integer	0
Solution value		35

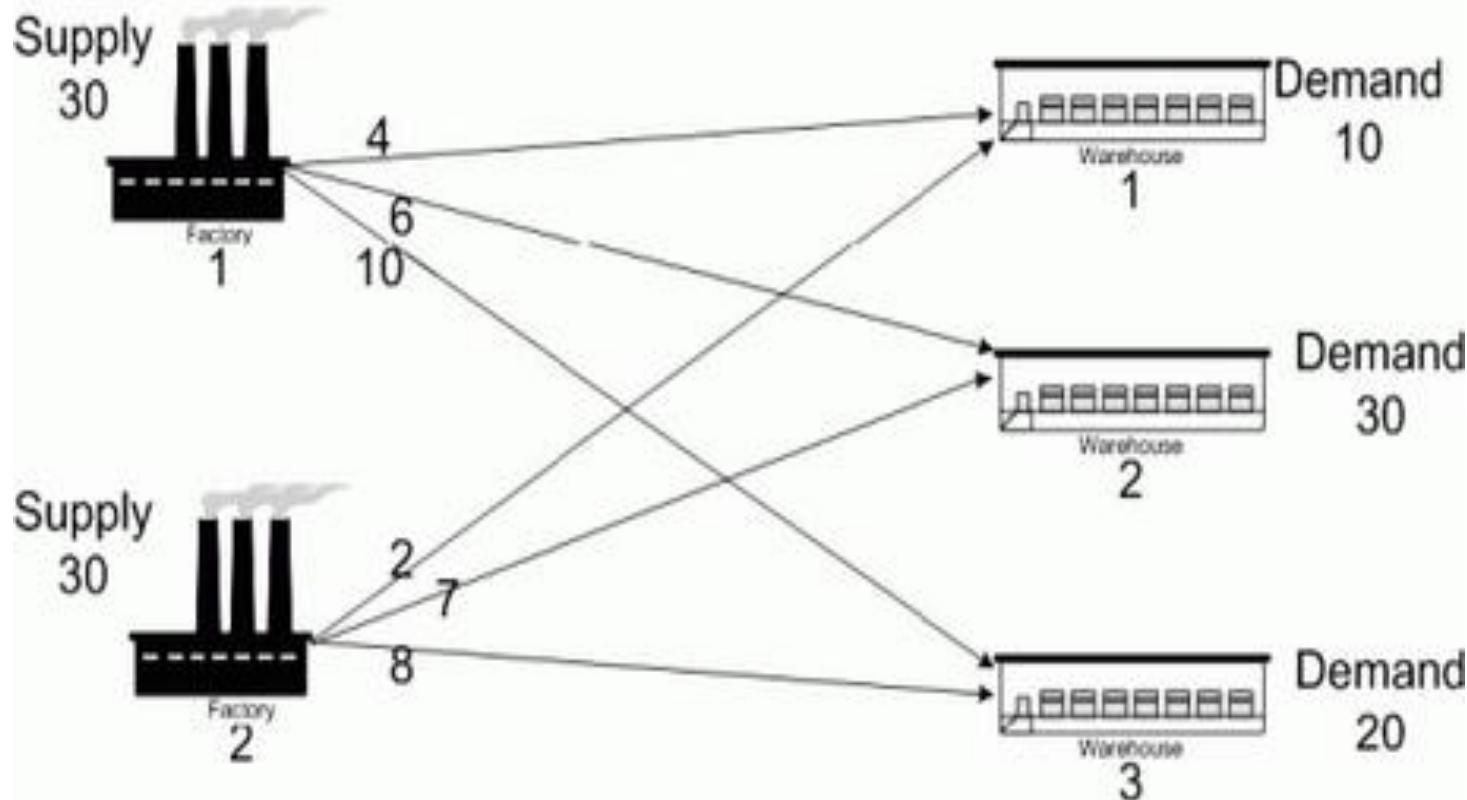
Using QM...



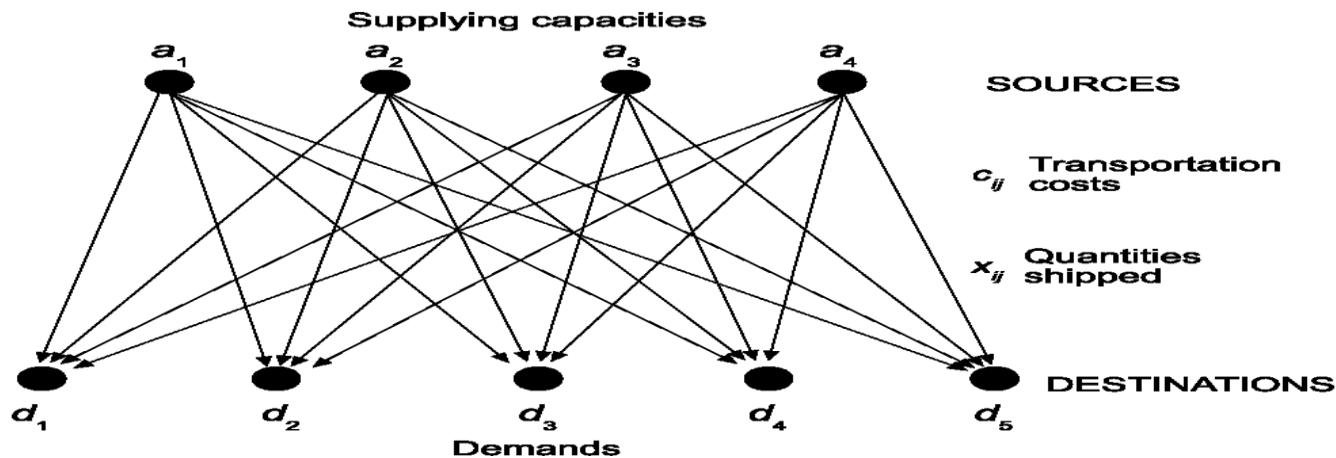
“Transportation” Problems

- There are a number of special management problems that can be solved via integer linear programming
- One common problem is that of the “transportation problem”
- Here we have a number of plants (or warehouses) that can produce (or ship) products subject to **supply constraints** and we have a number of consumers (or customers) that have certain **demands for products**
- There is a **cost associated with shipping product from the warehouses to the customers**

“Transportation” Problems (con’t)



- What are the variables ?
- What is the objective function ?
- What are the constraints ?

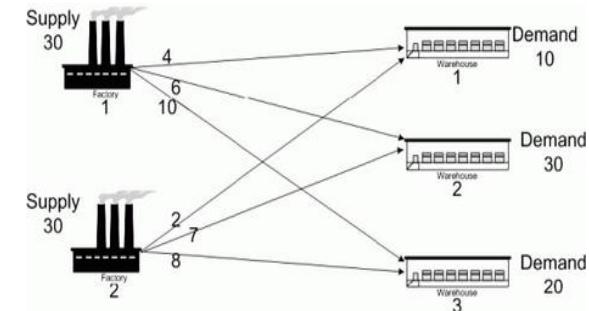


■ Do not look ahead !

“Transportation” Problems (con’t)

Let:

- X_{ij} = number of units shipped from source i to destination j (*integers*)
- c_{ij} = cost of one unit from source i to destination j
- s_i = supply at source i
- d_j = demand at destination j



“Transportation” Problems (con’t)

Minimize cost =
Subject to:

$$\sum_{j=1}^n \sum_{i=1}^m c_{ij} x_{ij}$$

$$\sum_{j=1}^n x_{ij} \leq s_i \quad i = 1, 2, \dots, m \quad [supply]$$

$$\sum_{i=1}^m x_{ij} \leq d_j \quad j = 1, 2, \dots, n \quad [demand]$$

$x_{ij} \geq 0$ for all i and j , and are integers

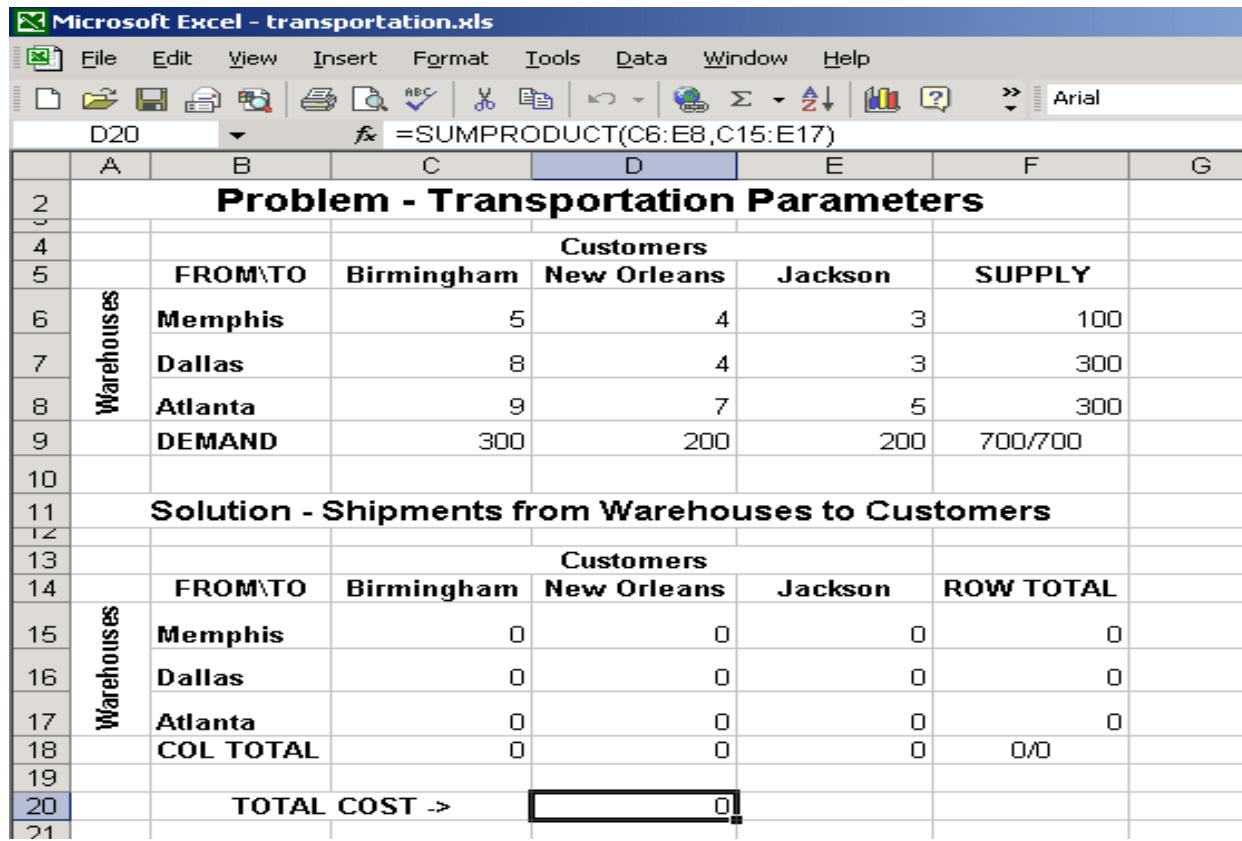
Transportation Matrix in Excel

[showing demand, supply, and transport costs]

	A	B	C	D	E	F	G
1							
2							
3			Customers				
4		FROM\TO	Birmingham	New Orleans	Jackson		SUPPLY
5	Warehouses	Memphis	5	4	3	100	
6		Dallas	8	4	3	300	
7		Atlanta	9	7	5	300	
8		DEMAND	300	200	200	700/700	
9							
10							

Cost from
Dallas to
Jackson

Set Up Shipment Table and Cost Function



Problem - Transportation Parameters						
Warehouses	FROM\TO	Customers			SUPPLY	D20
		Birmingham	New Orleans	Jackson		
	Memphis	5	4	3	100	
	Dallas	8	4	3	300	
	Atlanta	9	7	5	300	
	DEMAND	300	200	200	700/700	
	Solution - Shipments from Warehouses to Customers					
	Warehouses	Customers			ROW TOTAL	TOTAL COST ->
		FROM\TO	Birmingham	New Orleans	Jackson	
		Memphis	0	0	0	0
		Dallas	0	0	0	0
		Atlanta	0	0	0	0
		COL TOTAL	0	0	0	0/0
		TOTAL COST ->				0

- Target is D20 (minimize)
- Manipulate c15:e17
- Subject to:
 - Col totals equal demand
 - Row totals \leq supply
 - Shipments are integers and +

Need another matrix for decision variables.

Parameters for Excel Solver

Microsoft Excel - transportation.xls

D20 =SUMPRODUCT(C6:E8,C15:E17)

Problem - Transportation P

		Customers	
		Birmingham	New Orleans
Warehouses	FROM\TO		
	Memphis	5	4
Dallas	8	4	
Atlanta	9	7	
DEMAND	300	200	

Solution - Shipments from Warehouses

		Customers	
		Birmingham	New Orleans
Warehouses	FROM\TO		
	Memphis	0	0
Dallas	0	0	
Atlanta	0	0	
COL TOTAL	0	0	0/0

Solver Parameters

Set Target Cell: \$D\$20

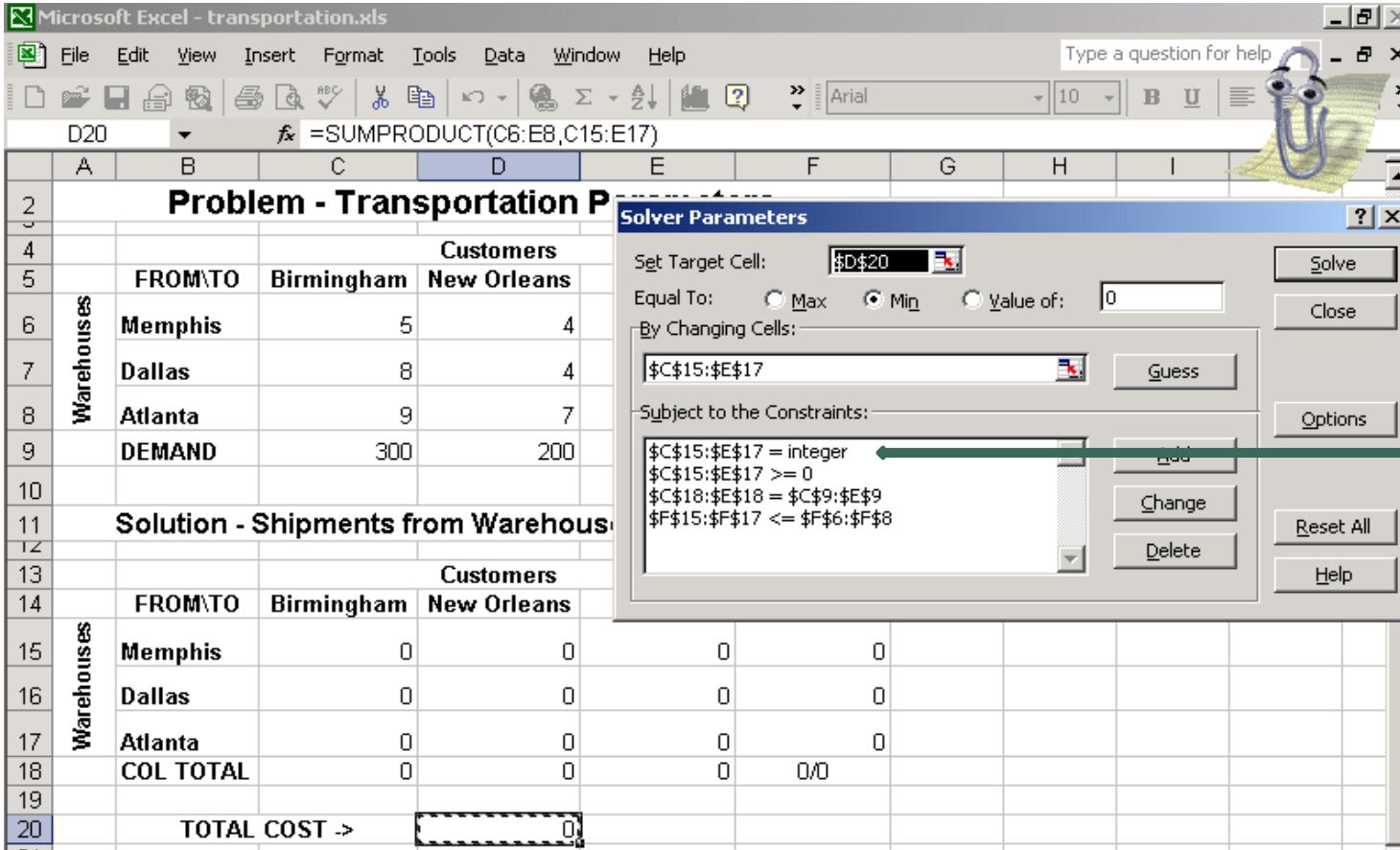
Equal To: Min Max Value of: 0

By Changing Cells: \$C\$15:\$E\$17

Subject to the Constraints:

- \$C\$15:\$E\$17 = integer
- \$C\$15:\$E\$17 >= 0
- \$C\$18:\$E\$18 = \$C\$9:\$E\$9
- \$F\$15:\$F\$17 <= \$F\$6:\$F\$8

Solve Close Options Reset All Help



Excel Solution

Microsoft Excel - transportation.xls

File Edit View Insert Format Tools Data Window Help

Type a question for help

=SUMPRODUCT(C6:E8,C15:E17)

Problem - Transportation Parameters

		Customers			
		Birmingham	New Orleans	Jackson	
Warehouses	FROM\TO				
	Memphis		5	4	
	Dallas		8	4	
	Atlanta		9	7	
DEMAND		300	200		

Solver Results

Solver found a solution. All constraints and optimality conditions are satisfied.

Keep Solver Solution

Restore Original Values

Reports

Answer
Sensitivity
Limits

OK Cancel Save Scenario... Help

Solution - Shipments from Warehouses

		Customers			
		Birmingham	New Orleans	Jackson	ROW TOTAL
Warehouses	FROM\TO				
	Memphis	99.99999933	3.33333E-07	3.33333E-07	100
	Dallas	0	199.9999997	100.0000003	300
	Atlanta	200.0000007	0	99.99999933	300
COL TOTAL	300	200	200	700/700	
TOTAL COST ->	3900.000001				

After Formatting Cells

Microsoft Excel - transportation.xls

D20 =SUMPRODUCT(C6:E8,C15:E17)

Problem - Transportation Parameters

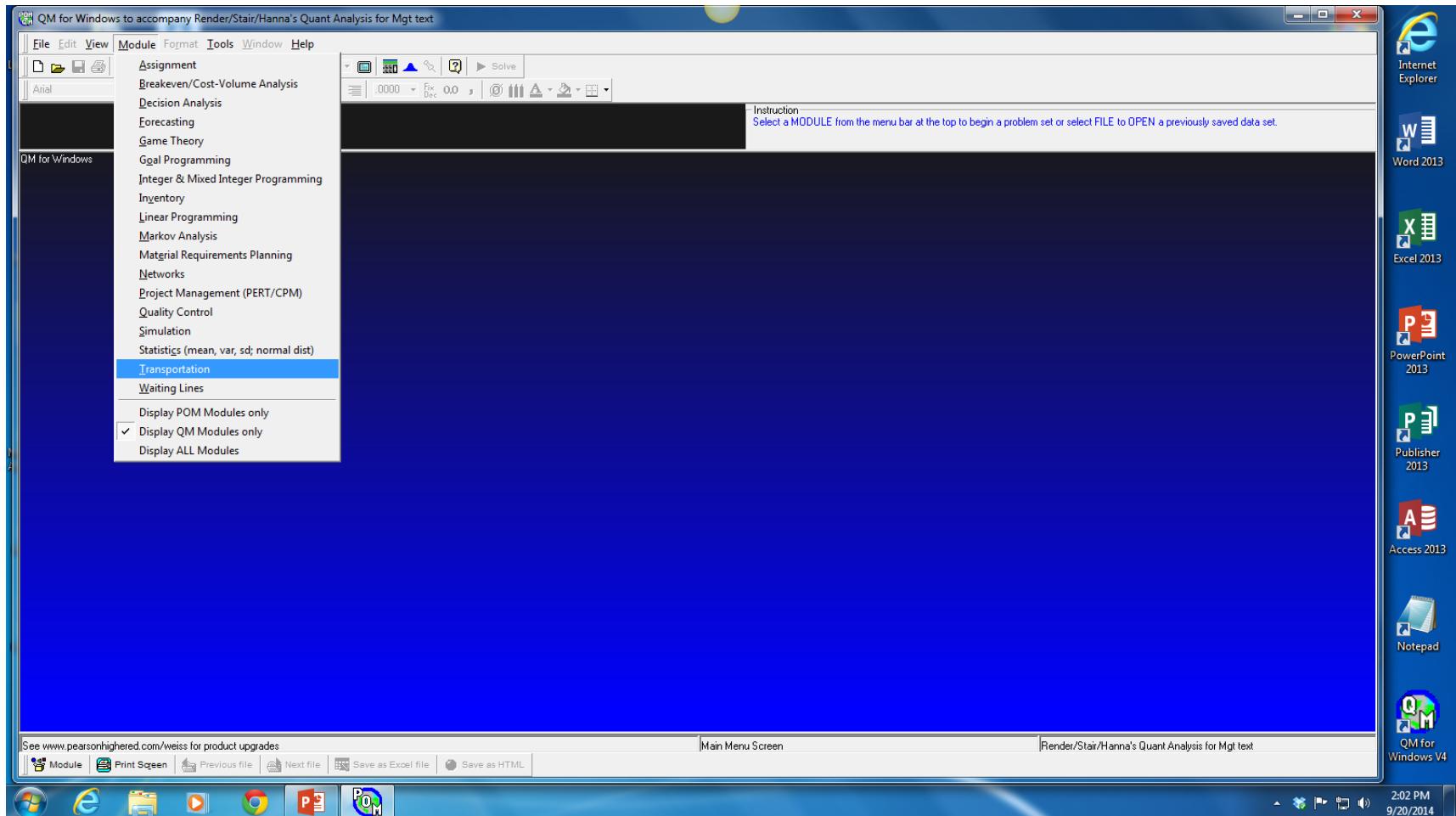
Warehouses	FROM\TO	Customers			SUPPLY
		Birmingham	New Orleans	Jackson	
Memphis		5	4	3	100
Dallas		8	4	3	300
Atlanta		9	7	5	300
DEMAND		300	200	200	700/700

Solution - Shipments from Warehouses to Customers

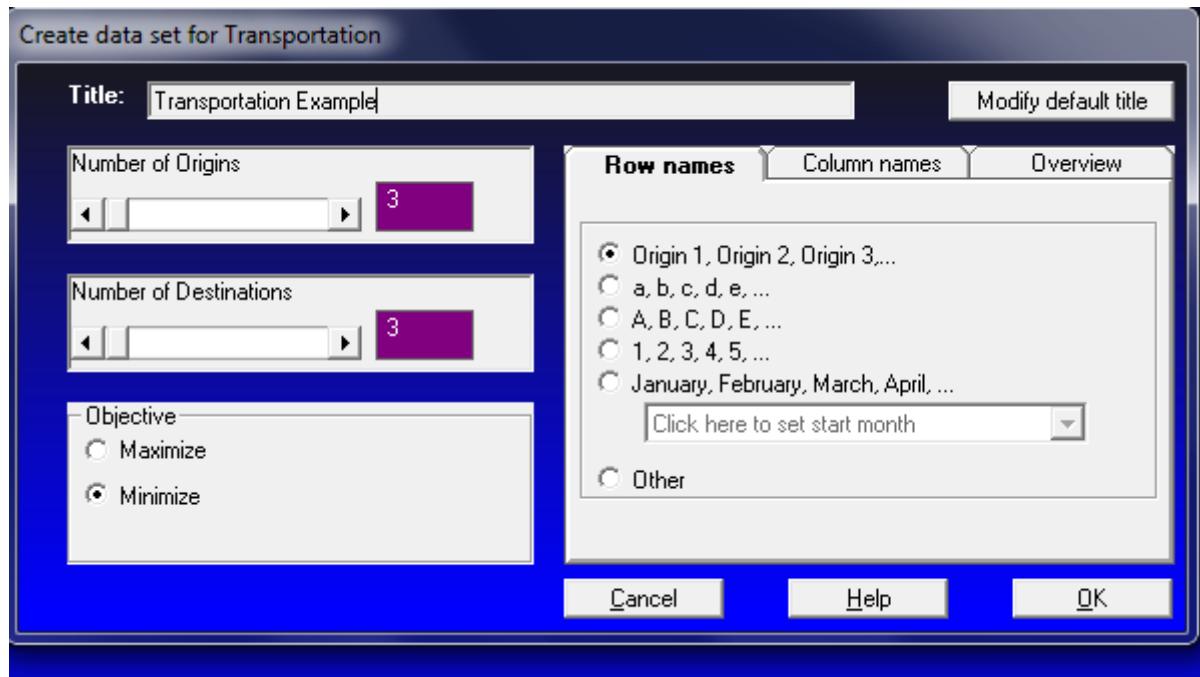
Warehouses	FROM\TO	Customers			ROW TOTAL
		Birmingham	New Orleans	Jackson	
Memphis		100	0	0	100
Dallas		0	200	100	300
Atlanta		200	0	100	300
COL TOTAL		300	200	200	700/700

TOTAL COST -> \$3,900.00

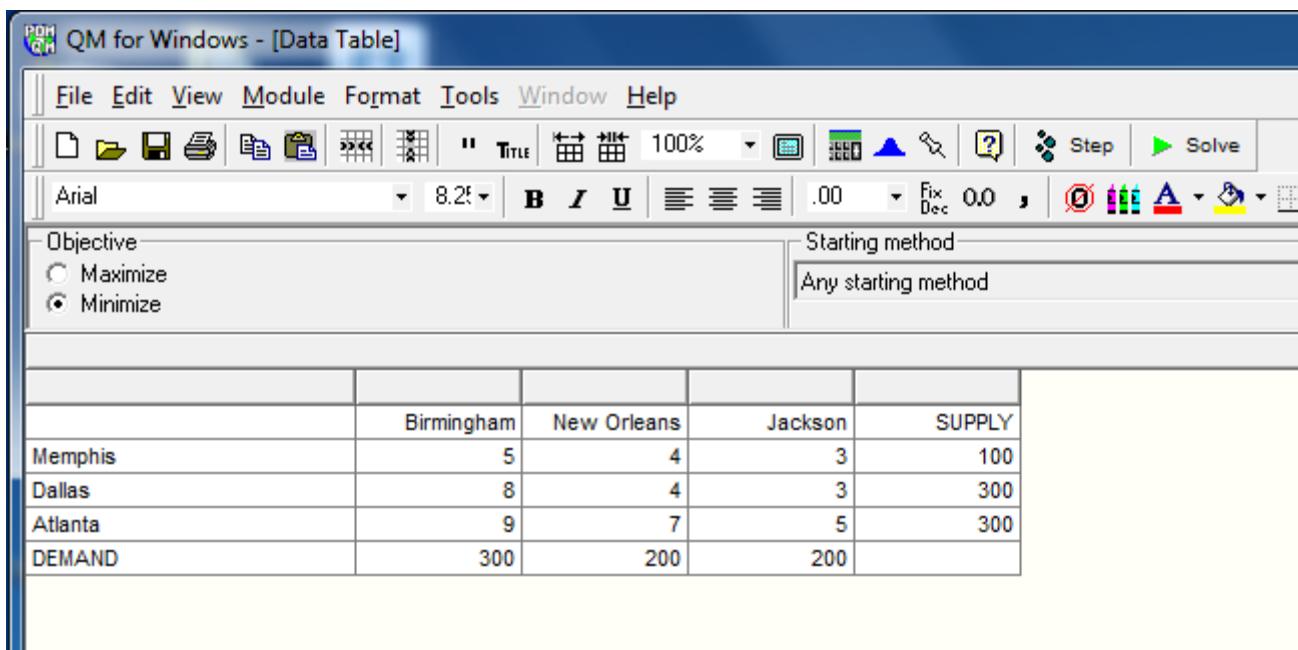
Using QM...



Using QM...



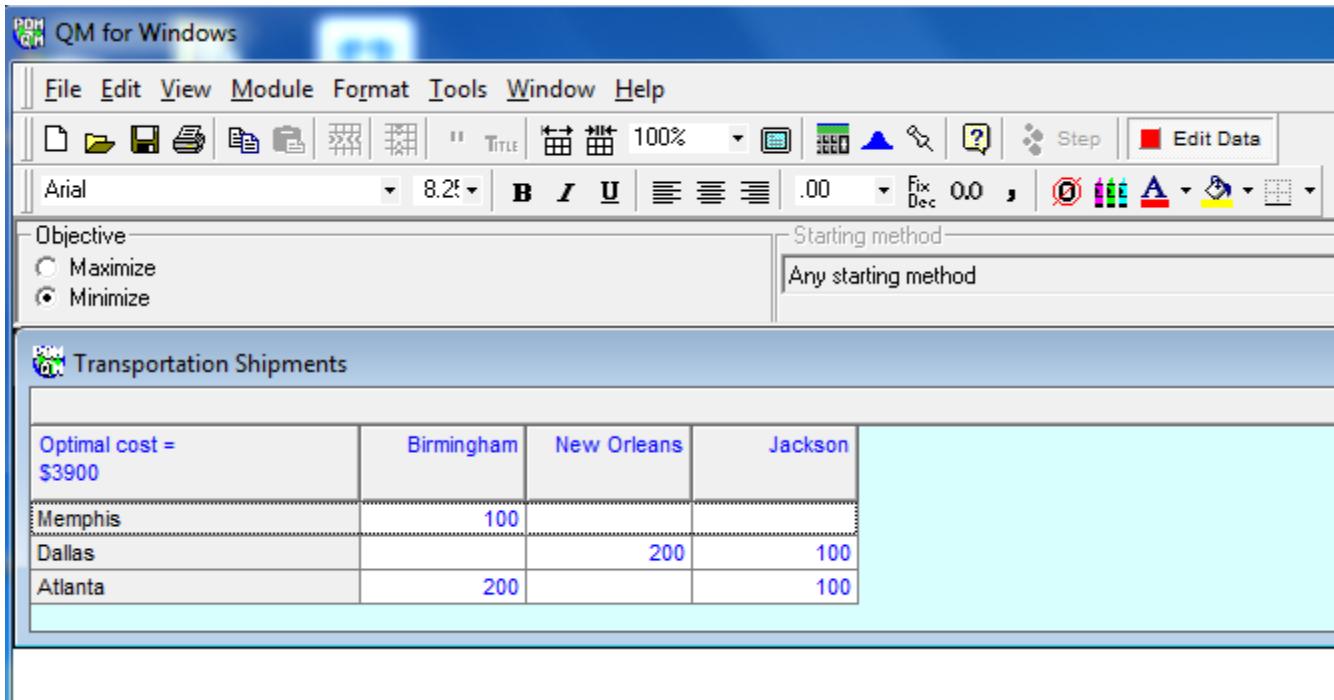
Using QM...



The screenshot shows the QM for Windows software interface with a blue header bar. The title bar reads "QM for Windows - [Data Table]". The menu bar includes File, Edit, View, Module, Format, Tools, Window, and Help. The toolbar below the menu bar contains various icons for file operations, data entry, and solving the model. The main workspace is divided into sections: "Objective" (radio buttons for Maximize and Minimize, with Minimize selected), "Starting method" (text box containing "Any starting method"), and a "Data Table" section. The data table is a grid with columns labeled "Birmingham", "New Orleans", "Jackson", and "SUPPLY". Rows include "Memphis" (Supply 100), "Dallas" (Supply 300), "Atlanta" (Supply 300), and a "DEMAND" row (Demand 300, 200, 200). The table has a light gray background with white text for values.

	Birmingham	New Orleans	Jackson	SUPPLY
Memphis	5	4	3	100
Dallas	8	4	3	300
Atlanta	9	7	5	300
DEMAND	300	200	200	

Using QM...



The screenshot shows the QM for Windows software interface. The menu bar includes File, Edit, View, Module, Format, Tools, Window, and Help. The toolbar includes various icons for file operations, data entry, and tools. The main window is titled "QM for Windows" and "Transportation Shipment". The "Objective" section has a radio button for "Minimize" selected. The "Starting method" section has a dropdown menu with "Any starting method" selected. The data table is titled "Transportation Shipment" and contains the following data:

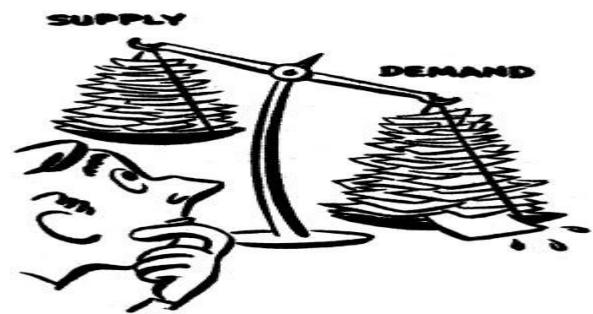
	Birmingham	New Orleans	Jackson
Memphis	100		
Dallas		200	100
Atlanta	200		100

Unbalanced Transportation Problems

- In real-life problems, **total demand may not be equal to total supply**
- These *unbalanced problems* can be handled easily by introducing *dummy sources* or *dummy destinations*
- If total supply is greater than total demand, a dummy destination (warehouse), with demand exactly equal to the surplus, is created
- If total demand is greater than total supply, we introduce a dummy source (factory) with a supply equal to the excess of demand over supply

Unbalanced Transportation Problems (con't)

- In either case, shipping cost coefficients of zero are assigned to each dummy location or route as no goods will actually be shipped.
- Any units assigned to a dummy destination represent excess capacity
- Any units assigned to a dummy source represent unmet demand



More Than One Optimal Solution

- It is possible for a transportation problem to have **multiple optimal solutions**
- This means that it is possible to design alternative shipping routes with the same total shipping cost
- In the real world, alternate optimal solutions provide management with greater flexibility in selecting and using resources

Unacceptable Or Prohibited Routes

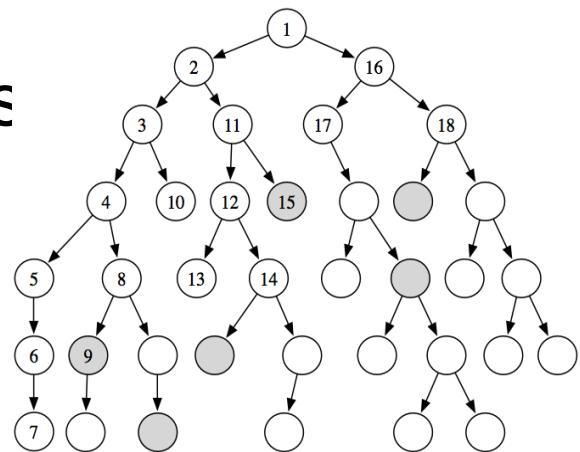
- At times there are transportation problems in which **one of the sources is unable to ship to one or more of the destinations**
 - The problem is said to have an *unacceptable* or *prohibited route*
- In a minimization problem, such a prohibited route is assigned a very high cost to prevent this route from ever being used in the optimal solution
- In a maximization problem, the very high cost used in minimization problems is given a negative sign, turning it into a very bad profit

Facility Location Analysis

- The transportation method is especially useful in helping a firm to decide **where to locate** a new factory or warehouse
- Each alternative location should be analyzed within the framework of one **overall** distribution system
- The new location that yields the minimum cost for the **entire system** is the one that should be chosen

Special Methods

- Transportation and assignment problems have some special algorithms that can be utilized as well as the general purpose integer linear programming methods including:
 - Branch and bound
 - Modified corner point methods
 - Stepping stone methods
 - Hungarian methods, etc.



Labor Planning

- Labor planning problems address resource needs over time and/or space
- The resources are often restricted to integers such as X number of people
- For example a bank may need a certain number of tellers for time periods of the day to satisfy differing customer demand by time period as shown on the next slide (for a total of 112 needed daily hours)

Labor Planning (con't)

Time Period	# of Tellers Required
9am – 10am	10
10am – 11am	12
11am – Noon	14
Noon – 1pm	16
1pm – 2pm	18
2pm – 3pm	17
3pm – 4pm	15
4pm – 5pm	10

Labor Planning (con't)

- The bank employs up to 12 full time tellers at a cost of \$100 per day per teller
- Full time tellers work from 9am until 5pm with 1 hour off for lunch (35 hour work week); half of the full time tellers go to lunch at 11am and the other half at noon
- Part time tellers put in exactly 4 hours per day and can start at any hourly even time slot (between 9am and 1pm); they cost \$32 per day (Let P1 be tellers at first time slot, P2 at second time slot, etc.)
- By regulations part time worker hours cannot exceed 50% of the total teller required hours:
 - $4 * (P1 + P2 + P3 + P4 + P5) \leq .5 * 112 \leq 56$

Labor Planning (con't)

	A	B	C	D	E	F	G	H	I	J	K
1											
2			F	P1	P2	P3	P4	P5			
3	Solution	0	0	0	0	0	0				
4	9-10a	1	1						$=\$C\$3*C4+\$D\$3*D4+\$E\$3*E4+\$F\$3*F4+\$G\$3*G4+\$H\$3*H4$	10	\geq
5	10-11a	1	1	1					$=\$C\$3*C5+\$D\$3*D5+\$E\$3*E5+\$F\$3*F5+\$G\$3*G5+\$H\$3*H5$	12	\geq
6	11a - Noon	0.5	1	1	1				$=\$C\$3*C6+\$D\$3*D6+\$E\$3*E6+\$F\$3*F6+\$G\$3*G6+\$H\$3*H6$	14	\geq
7	Noon - 1p	0.5	1	1	1	1			$=\$C\$3*C7+\$D\$3*D7+\$E\$3*E7+\$F\$3*F7+\$G\$3*G7+\$H\$3*H7$	16	\geq
8	1 - 2p	1		1	1	1	1		$=\$C\$3*C8+\$D\$3*D8+\$E\$3*E8+\$F\$3*F8+\$G\$3*G8+\$H\$3*H8$	18	\geq
9	2-3p	1			1	1	1		$=\$C\$3*C9+\$D\$3*D9+\$E\$3*E9+\$F\$3*F9+\$G\$3*G9+\$H\$3*H9$	17	\geq
10	3-4p	1				1	1		$=\$C\$3*C10+\$D\$3*D10+\$E\$3*E10+\$F\$3*F10+\$G\$3*G10+\$H\$3*H10$	15	\geq
11	4-5p	1					1		$=\$C\$3*C11+\$D\$3*D11+\$E\$3*E11+\$F\$3*F11+\$G\$3*G11+\$H\$3*H11$	10	\geq
12	Full Time	1							$=\$C\$3*C12+\$D\$3*D12+\$E\$3*E12+\$F\$3*F12+\$G\$3*G12+\$H\$3*H12$	12	\leq
13	Part Time		4	4	4	4	4		$=\$C\$3*C13+\$D\$3*D13+\$E\$3*E13+\$F\$3*F13+\$G\$3*G13+\$H\$3*H13$	56	\leq
14	Objective	100	32	32	32	32	32		$=\$C\$3*C14+\$D\$3*D14+\$E\$3*E14+\$F\$3*F14+\$G\$3*G14+\$H\$3*H14$		Min
15											
16											

Labor Planning (con't)

	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O
1															
2		F	P1	P2	P3	P4	P5								
3	Solution	0	0	0	0	0	0								
4	9-10a	1	1						0	10	>=				
5	10-11a	1	1	1					0	12	>=				
6	11a - Noon	0.5	1	1	1				0	14	>=				
7	Noon - 1p	0.5	1	1	1	1			0	16	>=				
8	1 - 2p	1		1	1	1	1		0	18	>=				
9	2-3p	1			1	1	1		0	17	>=				
10	3-4p	1				1	1		0	15	>=				
11	4-5p	1					1		0	10	>=				
12	Full Time	1							0	12	<=				
13	Part Time		4	4	4	4	4		0	56	<=				
14	Objective	100	32	32	32	32	32	32	0		Min				
15															
16															
17															
18															
19															
20															
21															
22															
23															
24															
25															

Solver Parameters

Set Target Cell:

Equal To: Max Min Value of:

By Changing Cells:

Subject to the Constraints:

-
-
-
-
-
-

Labor Planning (con't)

	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q
1																	
2			F	P1	P2	P3	P4	P5									
3	Solution		10	3	3	3	2	3									
4	9-10a		1	1					13	10	>=						
5	10-11a		1	1	1				16	12	>=						
6	11a - Noon		0.5	1	1	1			14	14	>=						
7	Noon - 1p		0.5	1	1	1	1		16	16	>=						
8	1 - 2p		1		1	1	1	1	21	18	>=						
9	2-3p		1			1	1	1	18	17	>=						
10	3-4p		1				1	1	15	15	>=						
11	4-5p		1					1	13	10	>=						
12	Full Time		1						10	12	<=						
13	Part Time			4	4	4	4	4	56	56	<=						
14	Objective		100	32	32	32	32	32	1448		Min						
15																	
16																	
17																	
18																	
19																	
20																	
21																	
22																	
23																	
24																	
25																	

The Solver Results dialog box is displayed. It contains the message: "Solver found a solution. All constraints and optimality conditions are satisfied." There are two radio buttons: "Keep Solver Solution" (selected) and "Restore Original Values". On the right, there are buttons for "OK", "Cancel", "Save Scenario...", and "Help". A "Reports" section on the right lists "Answer", "Sensitivity", and "Limits".

Labor Planning (con't)

Another solution at \$1448 – there are multiple optimal solutions

	A	B	C	D	E	F	G	H	I	J	K	
1												
2			F	P1	P2	P3	P4	P5				
3	Solution	10		0	2	7	5	0				
4	9-10a	1		1					10	10	>=	
5	10-11a	1		1	1				12	12	>=	
6	11a - Noon	0.5		1	1	1			14	14	>=	
7	Noon - 1p	0.5		1	1	1	1		19	16	>=	
8	1 - 2p	1			1	1	1	1	24	18	>=	
9	2-3p	1				1	1	1	22	17	>=	
10	3-4p	1					1	1	15	15	>=	
11	4-5p	1						1	10	10	>=	
12	Full Time	1							10	12	<=	
13	Part Time			4	4	4	4	4	56	56	<=	
14	Objective	100		32	32	32	32	32	1448		Min	
15												
16												

Labor Planning (con't)

Another Optimal solution – which one depends upon starting values for the solution variables, and the order of the constraints !!!

	A	B	C	D	E	F	G	H	I	J	K	L
1												
2			F	P1	P2	P3	P4	P5				
3	Solution		10	6	1	2	5	0				
4	9-10a		1	1					16	10	>=	
5	10-11a		1	1	1				17	12	>=	
6	11a - Noon	0.5	1	1	1				14	14	>=	
7	Noon - 1p	0.5	1	1	1	1			19	16	>=	
8	1 - 2p		1		1	1	1	1	18	18	>=	
9	2-3p		1			1	1	1	17	17	>=	
10	3-4p		1				1	1	15	15	>=	
11	4-5p		1					1	10	10	>=	
12	Full Time		1						10	12	<=	
13	Part Time			4	4	4	4	4	56	56	<=	
14	Objective	100		32	32	32	32	32	1448		Min	
15												

Mixed-Integer Programming Problem Example

- There are many situations in which **some of the variables** are restricted to be integers and some are not
- As an example consider a chemical company that produces two industrial chemicals
- Xyline must be produced in 50-pound bags
- Hexall is sold by the pound and can be produced in any quantity
- Both xyline and hexall are composed of three ingredients – A , B , and C
- Xyline sells for \$85 a bag and hexall for \$1.50 per pound

Mixed-Integer Programming Problem Example (con't)

AMOUNT PER 50-POUND BAG OF XYLINE (LB)	AMOUNT PER POUND OF HEXALL (LB)	AMOUNT OF INGREDIENTS AVAILABLE
30	0.5	2,000 lb-ingredient A
18	0.4	800 lb-ingredient B
2	0.1	200 lb-ingredient C

- We want to maximize profit
- We let X = number of 50-pound bags of xyline
- We let Y = number of pounds of hexall
- This is a mixed-integer programming problem as Y is not required to be an integer

Mixed-Integer Programming Problem Example (con't)

■ The model is

Maximize profit = $\$85X + \$1.50Y$

subject to $30X + 0.5Y \leq 2,000$

$18X + 0.4Y \leq 800$

$2X + 0.1Y \leq 200$

$X, Y \geq 0$ and X integer

Mixed-Integer Programming Problem Example (con't)

■ Using Excel QM

Mixed-Integer Programming Problem Example (con't)

Linear Programming

Enter the values in the shaded area. Then go to the DATA Tab on the ribbon, click on Solver in the Data Analysis Group and then click SOLVE.

If SOLVER is not on the Data Tab then please see the Help file (Solver) for instructions.

Solver Parameters

Set Target Cell: \$G\$10

Equal To: Max

By Changing Cells: \$B\$16:\$C\$16

Subject to the Constraints:

\$B\$16:\$C\$16 = integer
 \$J\$11:\$J\$13 <= \$K\$11:\$K\$13
 \$L\$11:\$L\$13 >= \$M\$11:\$M\$13

Need to manually Add integer constraint

	A	B	C	D	E	F	G	H	I	J	K	L	M
1	Linear Programming												
2													
3	Signs												
4	<		less than or equal to										
5	=		equals (You need to enter an apostrophe first.)										
6	>		greater than or equal to										
7													
8	Data												
9	x 1		x 2										
10	Objective	85	1.5	sign	RHS								
11	Constraint 1	30	0.5	<	2000								
12	Constraint 2	18	0.4	<	800								
13	Constraint 3	2	0.1	<	200								
14													
15	Results												
16	Variables	44	20										
17	Objective				3770								
18													
19													
20													
21	Need to manually Add integer constraint												
22													
23													
24													
25													

Real World Mixed Integer Problem

[Network Mode Optimization for the DHL Supply Chain, Informs J. on Applied Analytics, Vol 51, No 3 2021]

Objective function

$$\text{Min } \sum_{k \in V} \left\{ f \cdot \theta_k + \sum_{i \in I_0} \sum_{j \in I_0} x_{ijk} \cdot (c_{ij} + p) - \sum_{i \in I_0} x_{i0k} \cdot p \right\} + \sum_{i \in I} \lambda_i \cdot y_i$$

Subject to:

Degree constraints

$$\sum_{i \in I_0} x_{ijk} = \sum_{h \in I_0} x_{jhk}, \forall k \in V, \forall j \in I_0$$

$$x_{i0k} = 0, \forall i \in I_0, \forall k \in V$$

$$\sum_{k \in V} \sum_{j \in I_0} x_{ijk} + y_i = 1, \forall i \in I$$

$$\sum_{j \in I_0} x_{0jk} \leq 1, \forall k \in V$$

Time-window constraints

$$a_j \cdot x_{ijk} \geq s_{ijk} \geq e_j \cdot x_{ijk}, \forall i \in I_0, \forall j \in I, \forall k \in V$$

$$s_{ijk} \leq \sum_{h \in I_0} s_{hik} + x_{ijk} \cdot \left(\frac{d_g}{g} + \mu_i \right) + b \cdot l_{jk}, \forall i \in I, \forall j \in I_0, \forall k \in V$$

$$s_{ijk} \geq \sum_{h \in I_0} s_{hik} + x_{ijk} \cdot \left(\frac{d_g}{g} + \mu_i \right) + b \cdot l_{jk} - (1 - x_{ijk}) \cdot M, \forall i \in I, \forall j \in I_0, \forall k \in V$$

Layover constraints

$$\sum_{i \in I_0} \sum_{j \in I_0} x_{ijk} \cdot \left(\frac{d_g}{g} + \mu_i \right) \leq \delta + 2 \cdot \delta \cdot z_k, \forall k \in V$$

$$\sum_{i \in I_0} \sum_{j \in I_0} x_{ijk} \cdot \left(\frac{d_g}{g} + \mu_i \right) \leq 2 \cdot \delta + \delta \cdot r_k, \forall k \in V$$

$$r_k + z_k = \sum_{j \in I_0} l_{jk}, \forall k \in V$$

$$l_{jk} \leq \sum_{i \in I_0} x_{ijk}, \forall j \in I_0, \forall k \in V$$

Truck-capacity constraints

$$q + (w_i - q) \cdot \sum_{k \in V} x_{0ik} \geq u_i \geq w_i, \forall i \in I$$

$$u_i - u_j + q \cdot \left(\sum_{k \in V} x_{ijk} \right) \leq q - w_j, \forall i, j \in I$$

Maximum-travel-time constraints

$$t^{max} \geq t_k \geq \sum_{i \in I_0} s_{i0k} - \sum_{j \in I_0} s_{0jk} + \sum_{j \in I_0} x_{0jk} \cdot \left(\frac{d_{0j}}{g} \right), \forall k \in V$$

$$O_k \geq \frac{t_k}{24}, \forall k \in V$$

Intranode-distance constraints

$$d_{ij} \cdot x_{ijk} \leq d^{max}, \forall i, j \in I_0, \forall k \in V$$

Symmetry breaking inequalities

$$t_k \geq t_{k+1}, \forall k \in V$$

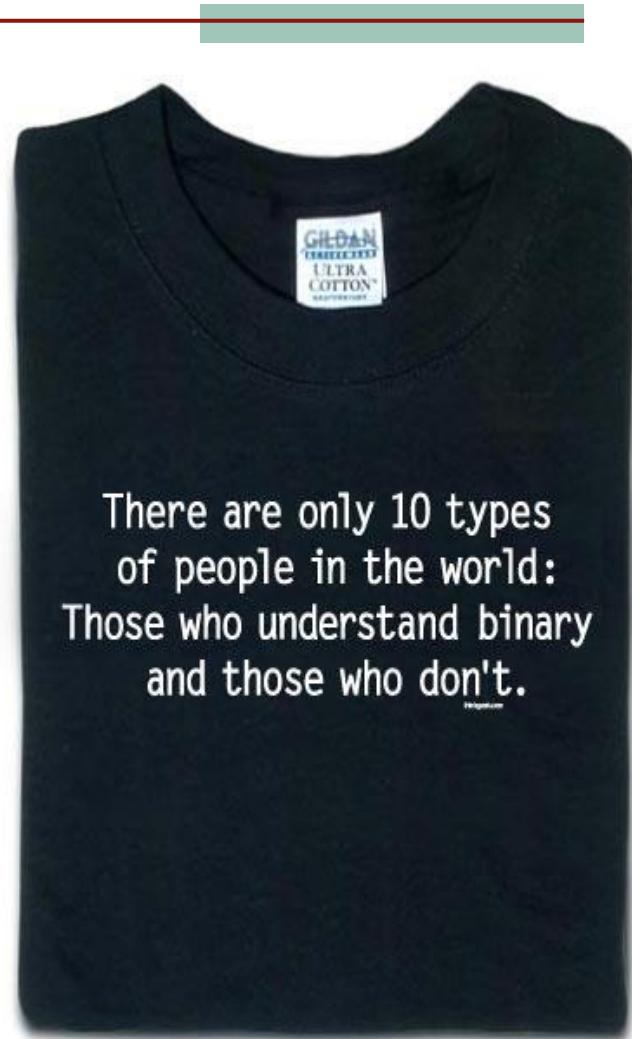
Integrality and nonnegativity constraints

$$x_{ijk}, y_i, l_{ik}, r_k, z_k \in \{0,1\}, y_0 = 0, \forall i \in I_0, \forall j \in I_0, \forall k \in V$$

$$t_k \geq 0, \theta_k \in \mathbb{Z}_+, s_{ijk} \geq 0, u_i \geq 0, \forall i \in I, \forall j \in I_0, \forall k \in V$$

Modeling With 0-1 (Binary) Variables

- Let's demonstrate how 0-1 variables can be used to model several diverse situations
- Typically a 0-1 variable is assigned a value of 0 if a certain condition is not met and a 1 if the condition is met
- This is also called a *binary variable*



There are only 10 types
of people in the world:
Those who understand binary
and those who don't.

The Assignment Problem

- Another common LP algorithm is the assignment method
- Each assignment problem has associated with it a table, or matrix
- Generally, the rows contain the objects or people we wish to assign, and the columns comprise the tasks or things to which we want them assigned
- The numbers in the table are the costs associated with each particular assignment
- An assignment problem can be viewed as a transportation problem in which the capacity from each source is 1 and the demand at each destination is 1

Assignment Model Approach

- The Knucklehead's Fix-It Shop has three rush projects to repair
- The shop has three repair persons with different talents and abilities (Larry, Curley, and Moe)
- The owner has estimates of wage costs for each worker for each project
- The owner's objective is to assign the three projects to the workers in a way that will result in the lowest cost to the shop
- Each project will be assigned exclusively to one worker

Assignment Problem Approach (con't)

Estimated Project Repair Costs for the Fix-It Shop
Assignment Problem

PERSON	PROJECT		
	1	2	3
Larry	\$11	\$14	\$6
Curley	8	10	11
Moe	9	12	7

PERSON	PROJECT		
	1	2	3
Larry	\$11	\$14	\$6
Curley	8	10	11
Moe	9	12	7

- $X_{ij} = 1$ if person i is assigned to job j , else 0
- Minimize $Z = 11X_{11} + 14X_{12} + 6X_{13} +$
■ $8X_{21} + 10X_{22} + 11X_{23} +$
■ $9X_{31} + 12X_{32} + 7X_{33}$
- Subject to:
 - $X_{i1} + X_{i2} + X_{i3} \leq 1$ for $i = 1$ to 3
 - $X_{ij} \geq 0$ and $X_{ij} \leq 1$ and X_{ij} is an integer (X_{ij} are binary)

Assignment Model Approach (con't)

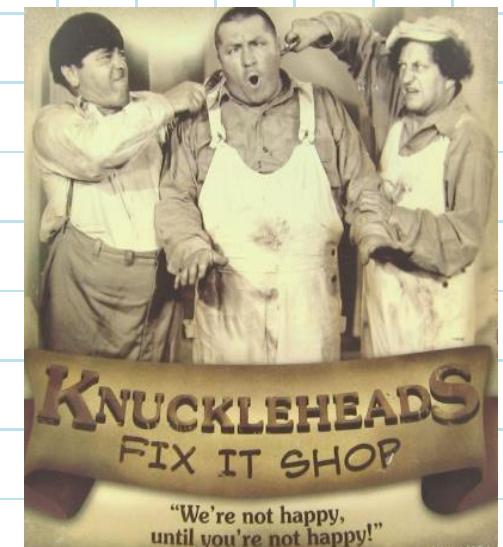
B	C	D	E	F
Cost for Assignments				
Project 1	Project 2	Project 3		
11	14	6		
8	10	11		
9	12	7		

Made				
Project 1	Project 2	Project 3	Total projects	Supply
0	0	1	1	1
0	1	0	1	1
1	0	0	1	1
1	1	1		
1	1	1		

25	
----	--

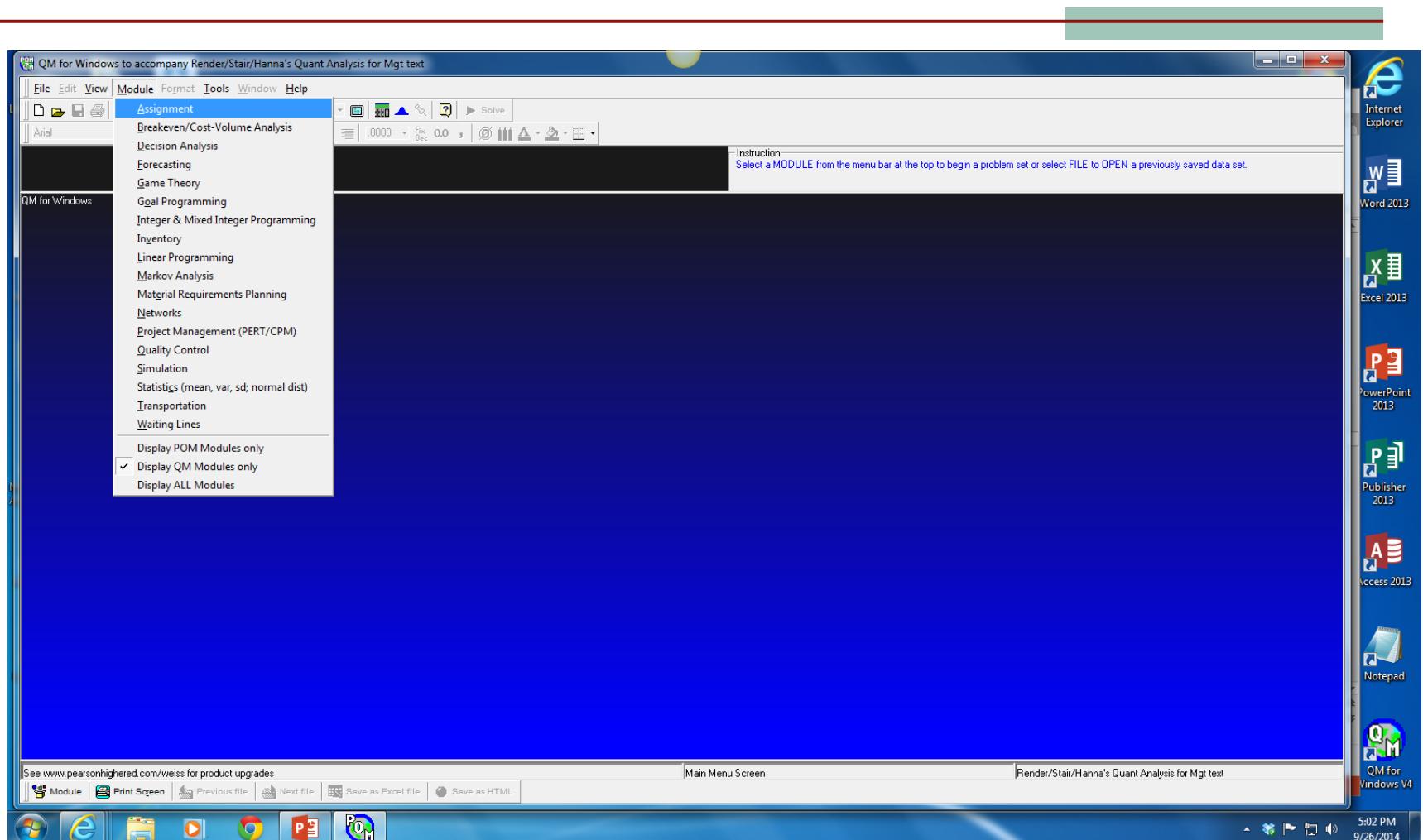
E
10 =SUM(B10:D10)

B
13 =SUM(B10:B12)

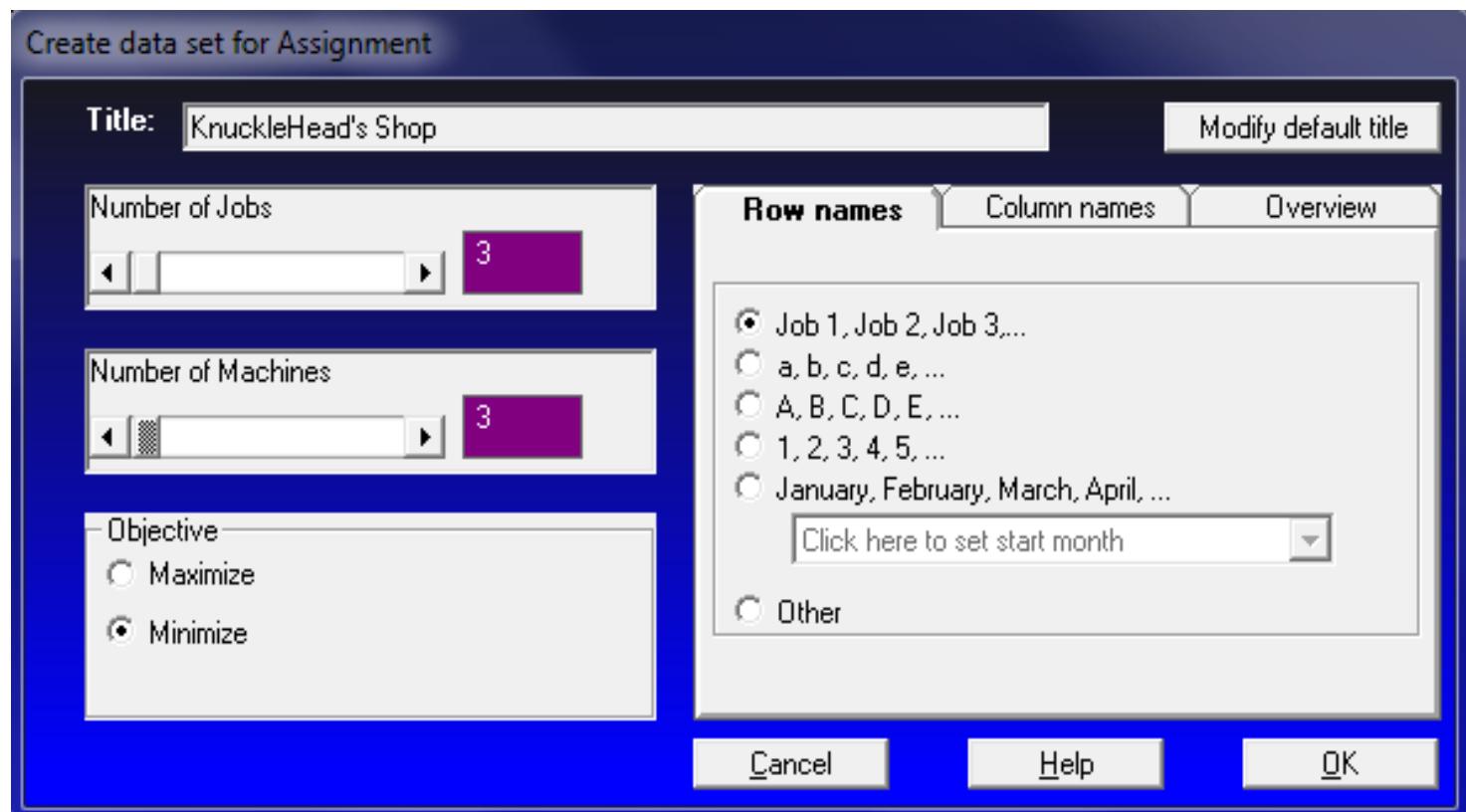


B
16 =SUMPRODUCT(B3:D5,B10:D12)

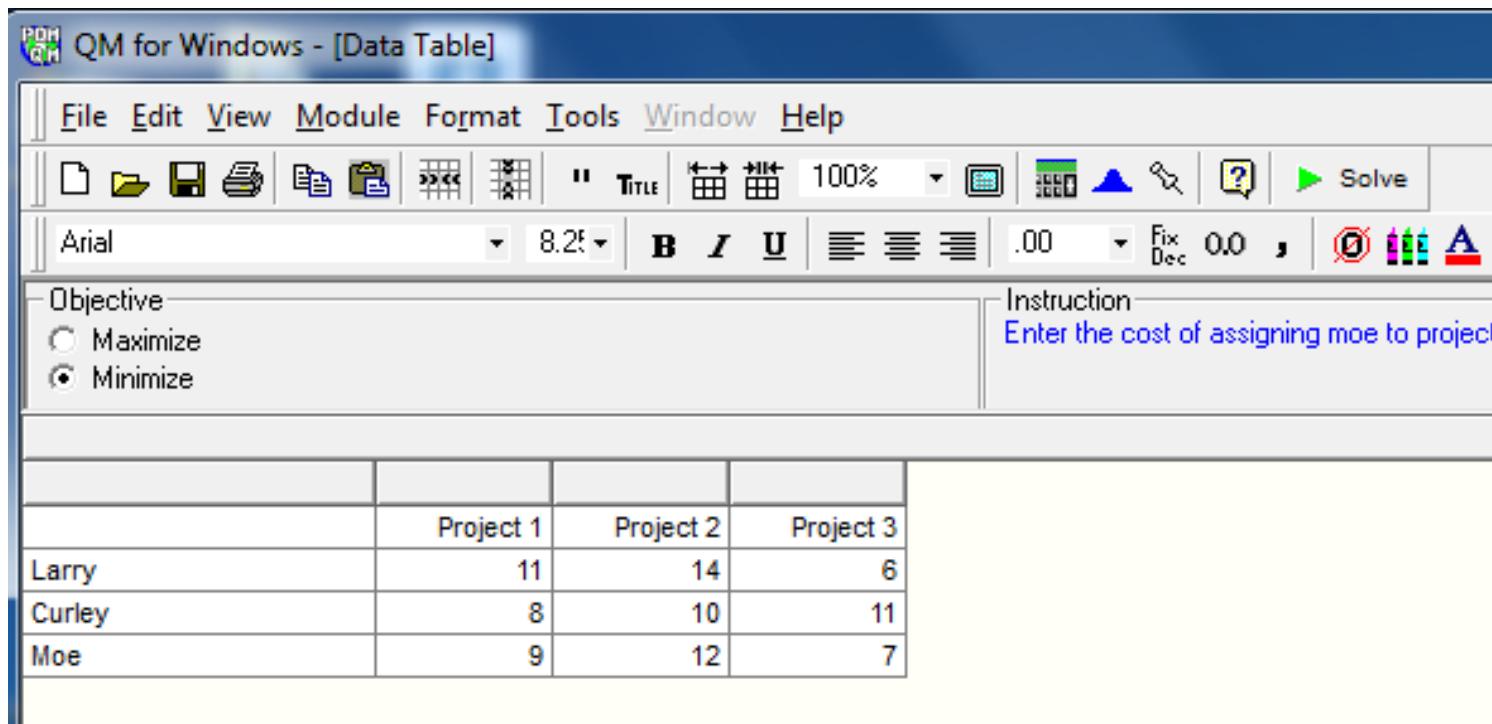
Using QM...



Using QM...



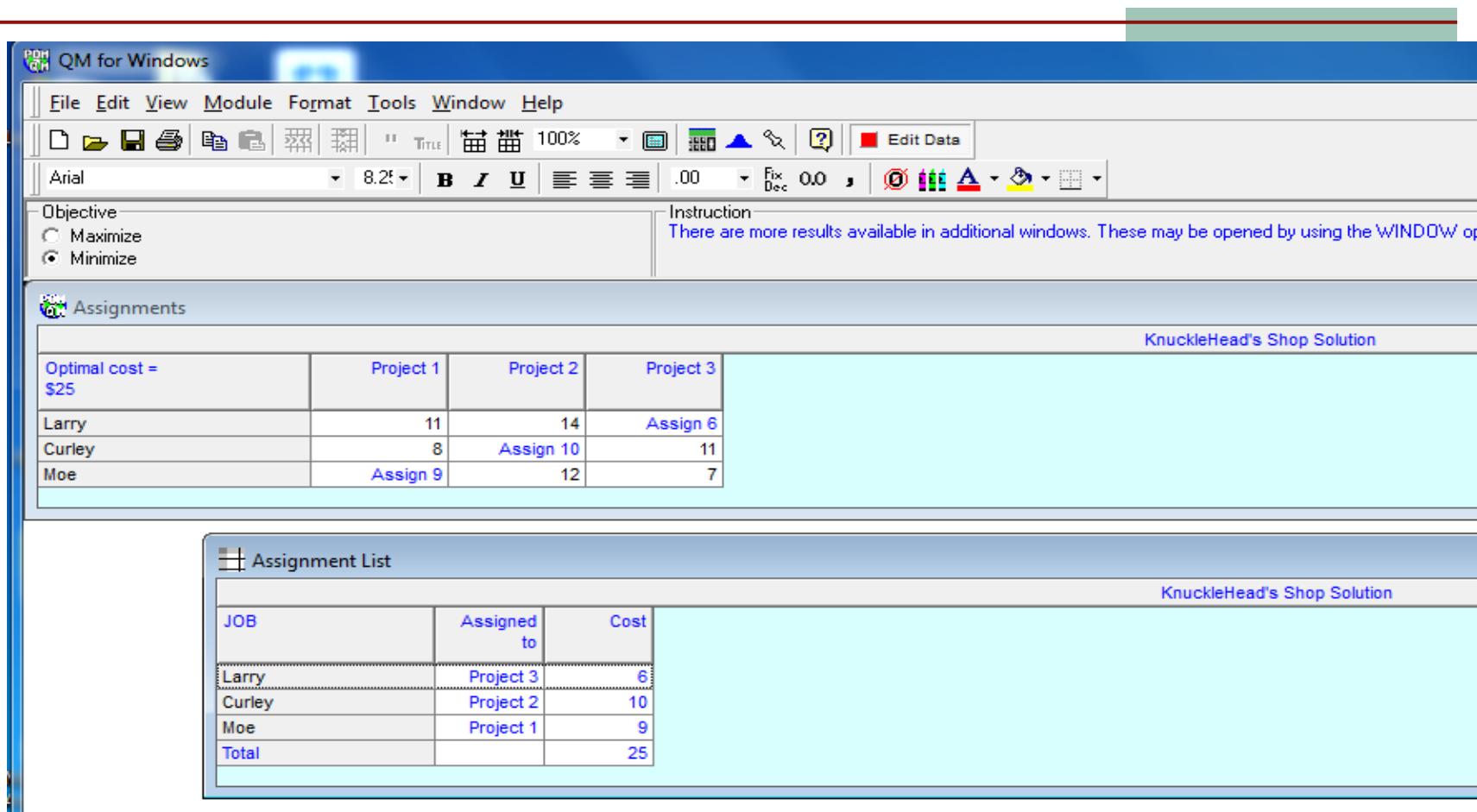
Using QM...



The screenshot shows the QM for Windows software interface with the title bar "QM for Windows - [Data Table]". The menu bar includes File, Edit, View, Module, Format, Tools, Window, and Help. The toolbar contains various icons for file operations, data entry, and solving. The font is set to Arial at 8.25pt, and the text style is bold. The objective function is set to "Minimize". The instruction is "Enter the cost of assigning moe to project". The data table is as follows:

	Project 1	Project 2	Project 3
Larry	11	14	6
Curley	8	10	11
Moe	9	12	7

Using QM...



The image shows the QM for Windows software interface. The main window is titled "QM for Windows" and displays an "Assignments" table. The table shows the optimal cost of \$25 and assignments for three projects (Project 1, Project 2, Project 3) across three workers (Larry, Curley, Moe). The "Assignment List" window is also visible, showing a list of assignments with columns for JOB, Assigned to, and Cost.

QM for Windows

File Edit View Module Format Tools Window Help

Arial 8.25 B I U .00 Fix Dec 0.0 Edit Data

Objective: Maximize Minimize

Instruction: There are more results available in additional windows. These may be opened by using the WINDOW option on the menu bar.

Assignments

Optimal cost = \$25

	Project 1	Project 2	Project 3
Larry	11	14	Assign 6
Curley	8	Assign 10	11
Moe	Assign 9	12	7

KnuckleHead's Shop Solution

Assignment List

JOB	Assigned to	Cost
Larry	Project 3	6
Curley	Project 2	10
Moe	Project 1	9
Total		25

KnuckleHead's Shop Solution

Fixed-Charge Problem Example

- Often businesses are faced with decisions involving a fixed charge that will affect the cost of future operations
- A manufacturing company is planning to build **at least one** new plant and three cities are being considered:
 - Baytown, Texas
 - Lake Charles, Louisiana
 - Mobile, Alabama
- Once the plant or plants are built, the company wants to have capacity to produce at least 38,000 units each year

Fixed-Charge Problem Example (con't)

■ Fixed and variable costs for Manufacturing Co.

SITE	ANNUAL FIXED COST	VARIABLE COST PER UNIT	ANNUAL CAPACITY
Baytown, TX	\$340,000	\$32	21,000
Lake Charles, LA	\$270,000	\$33	20,000
Mobile, AL	\$290,000	\$30	19,000

SITE	ANNUAL FIXED COST	VARIABLE COST PER UNIT	ANNUAL CAPACITY
Baytown, TX	\$340,000	\$32	21,000
Lake Charles, LA	\$270,000	\$33	20,000
Mobile, AL	\$290,000	\$30	19,000

- Management decisions ? [need 38,000/yr]
- What are the variables ?
- Use of binary variables?

■ Do not look ahead !

Fixed-Charge Problem Example (con't)

- We can define the decision variables as

$$x_1 = \begin{cases} 1 & \text{if factory is built in Baytown} \\ 0 & \text{otherwise} \end{cases}$$

$$x_2 = \begin{cases} 1 & \text{factory is built in Lake Charles} \\ 0 & \text{otherwise} \end{cases}$$

$$x_3 = \begin{cases} 1 & \text{if factory is built in Mobile} \\ 0 & \text{otherwise} \end{cases}$$

x_4 = number of units produced at Baytown plant

x_5 = number of units produced at Lake Charles plant

x_6 = number of units produced at Mobile plant

Fixed-Charge Problem Example (con't)

- The integer programming formulation becomes

$$\begin{aligned}\text{Minimize cost} = & 340,000X_1 + 270,000X_2 + 290,000X_3 \\ & + 32X_4 + 33X_5 + 30X_6\end{aligned}$$

$$\begin{aligned}\text{subject to} \quad & X_4 + X_5 + X_6 \geq 38,000 \\ & X_4 \leq 21,000 \\ & X_5 \leq 20,000X_2 \\ & X_6 \leq 19,000X_3 \\ & X_1, X_2, X_3 = 0 \text{ or } 1; \\ & X_4, X_5, X_6 \geq 0 \text{ and integer}\end{aligned}$$

Note capacity constraints expressed in terms of binary variables

- The optimal solution is

$$X_1 = 0, X_2 = 1, X_3 = 1 \text{ [build Lake Charles & Mobile Plants]}$$

$$X_4 = 0, X_5 = 19,000, X_6 = 19,000$$

$$\text{Objective function value} = \$1,757,000$$

Fixed-Charge Problem Example (con't)

Fixed-Charge Problem Example (con't)

	A	B	C	D	E	F	G	H	I
1									
2		X1	X2	X3	X4	X5	X6		
3	Solution	0	0	0	0	0	0		
4	Con 1				1	1	1	$=\$B\$3*B4+\$C\$3*C4+\$D\$3*D4+\$E\$3*E4+\$F\$3*F4+\$G\$3*G4$	38000
5	Con 2	-28000			1			$=\$B\$3*B5+\$C\$3*C5+\$D\$3*D5+\$E\$3*E5+\$F\$3*F5+\$G\$3*G5$	0
6	Con 3		-20000		1			$=\$B\$3*B6+\$C\$3*C6+\$D\$3*D6+\$E\$3*E6+\$F\$3*F6+\$G\$3*G6$	0
7	Con 4			-19000		1		$=\$B\$3*B7+\$C\$3*C7+\$D\$3*D7+\$E\$3*E7+\$F\$3*F7+\$G\$3*G7$	0
8	Objective	340000	270000	290000	32	33	30	$=\$B\$3*B8+\$C\$3*C8+\$D\$3*D8+\$E\$3*E8+\$F\$3*F8+\$G\$3*G8$	Min
9									
10									
11									
12									
13									
14									
15									
16									
17									
18									
19									
20									
21									
22									

Solver Parameters

Set Target Cell:

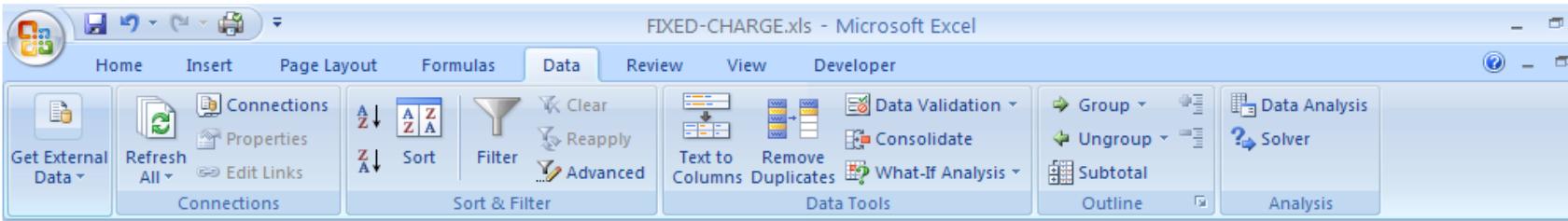
Equal To: Max Min Value of:

By Changing Cells:

Subject to the Constraints:

-
-
-
-
-
-

Fixed-Charge Problem Example (con't)



FIXED-CHARGE.xls - Microsoft Excel								
Connections		Sort & Filter		Data Tools			Analysis	
Get External Data	Refresh All	Properties	Connections	A Z Sort	Filter	Clear	Group	Subtotal
Connections	Refresh All	Properties	Connections	Z A Sort	Filter	Reapply	Ungroup	Solver
1								
2		X1	X2	X3	X4	X5	X6	
3	Solution	0	1	1	4.47286652160983E-12	18999.9999999977	19000	
4	Con 1				1	1	1	=\$B\$3*B4+\$C\$3*C4+\$D\$3*D4+\$E\$3*E4+\$F\$3*F4+\$G\$3*G4 38000
5	Con 2	-28000			1			=\$B\$3*B5+\$C\$3*C5+\$D\$3*D5+\$E\$3*E5+\$F\$3*F5+\$G\$3*G5 0
6	Con 3		-20000			1		=\$B\$3*B6+\$C\$3*C6+\$D\$3*D6+\$E\$3*E6+\$F\$3*F6+\$G\$3*G6 0
7	Con 4			-19000			1	=\$B\$3*B7+\$C\$3*C7+\$D\$3*D7+\$E\$3*E7+\$F\$3*F7+\$G\$3*G7 0
8	Objective	340000	270000	290000	32	33	30	=\$B\$3*B8+\$C\$3*C8+\$D\$3*D8+\$E\$3*E8+\$F\$3*F8+\$G\$3*G8
9								
10								
11								
12								
13								
14								
15								

Portfolio Optimization

- Portfolio problems can be regular LP problems or a type of integer problems
 - Maximize the return from a number of financial investments subject to risk and diversity constraints – **regular LP**
 - Maximize the return on projects by selecting which projects to work on within risk and budget constraints – **a zero/one type of integer programming problem (binary programming)**

Net Present Value

- $NPV = \sum (B - C)_t / (1+i)^t$
- Where $(B-C)_t$ is the benefit minus the cost for period t
- i is the interest rate (cost of borrowing money or opportunity cost for other uses of cash)
- For NPV, benefit minus cost is more formally revenue (cash in) minus expenditures (cash out)

NPV Example

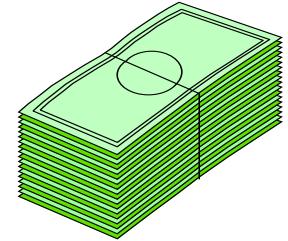
Year	Benefit	Cost	B-C	Discounted B-C
1	\$0.00	\$175,000.00	-\$175,000.00	-\$159,090.91
2	\$0.00	\$175,000.00	-\$175,000.00	-\$144,628.10
3	\$50,000.00	\$25,000.00	\$25,000.00	\$18,782.87
4	\$100,000.00	\$10,000.00	\$90,000.00	\$61,471.21
5	\$100,000.00	\$10,000.00	\$90,000.00	\$55,882.92
6	\$100,000.00	\$10,000.00	\$90,000.00	\$50,802.65
7	\$100,000.00	\$10,000.00	\$90,000.00	\$46,184.23
8	\$100,000.00	\$10,000.00	\$90,000.00	\$41,985.66
9	\$100,000.00	\$10,000.00	\$90,000.00	\$38,168.79
10	\$100,000.00	\$10,000.00	\$90,000.00	\$34,698.90
Total	\$750,000.00	\$445,000.00	\$305,000.00	\$44,258.22

Interest = 0.1

Internal Rate of Return (IRR)

- Another similar project financial evaluation technique is called the ***internal rate of return*** (IRR)
- This metric is better than NPV since it is not as sensitive to the uncertainties of future benefits and costs and to the future interest rates
- **The internal rate of return is the value of the interest rate that yields a zero value for NPV**
 - This can be calculated in spreadsheet programs by using built-in “solver” tools. Since in reality a quadratic equation is being solved, multiple IRR values could be found. Thus one must impose additional constraints on the solution (such as IRR is positive, or in a given range).

IRR Example



Year	Benefit	Cost	B-C	Discounted B-C
1	\$0.00	\$175,000.00	-\$175,000.00	-\$154,728.74
2	\$0.00	\$175,000.00	-\$175,000.00	-\$136,805.61
3	\$50,000.00	\$25,000.00	\$25,000.00	\$17,279.80
4	\$100,000.00	\$10,000.00	\$90,000.00	\$55,001.46
5	\$100,000.00	\$10,000.00	\$90,000.00	\$48,630.33
6	\$100,000.00	\$10,000.00	\$90,000.00	\$42,997.19
7	\$100,000.00	\$10,000.00	\$90,000.00	\$38,016.58
8	\$100,000.00	\$10,000.00	\$90,000.00	\$33,612.90
9	\$100,000.00	\$10,000.00	\$90,000.00	\$29,719.32
10	\$100,000.00	\$10,000.00	\$90,000.00	\$26,276.76
Total	\$750,000.00	\$445,000.00	\$305,000.00	\$0.00
Interest = 0.131011619				

Projects with the same net present value may have different internal rates of return

Case 1

Period	Benefit	Cost	B-C	Discounted B-C
1	0	70	-70	-\$60.87
2	0	50	-50	-\$37.81
3	20	30	-10	-\$6.58
4	90	0	90	\$51.46
5	120	0	120	\$59.66
			NPV:	\$5.87
			Interest:	0.15
			IRR:	0.17

Case 2

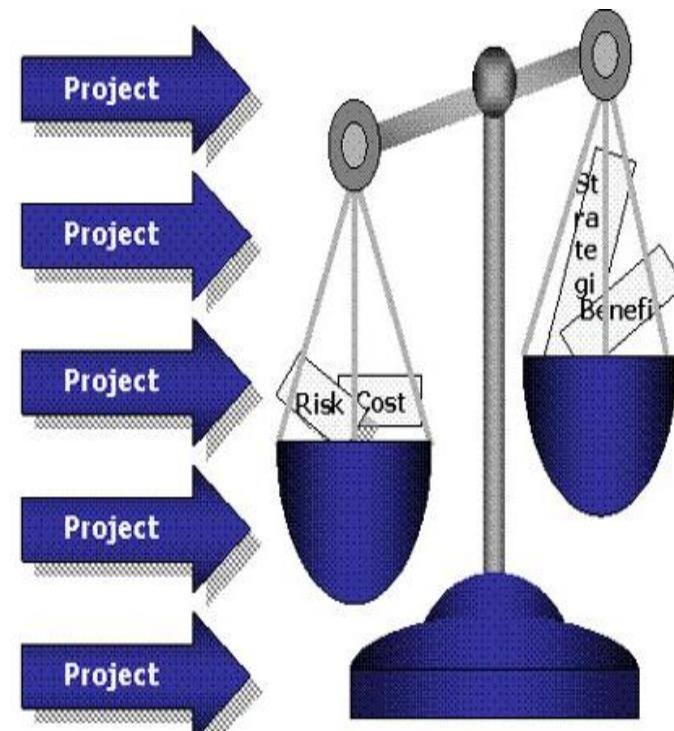
Period	Benefit	Cost	B-C	Discounted B-C
1	0	20	-20	-\$17.39
2	0	40	-40	-\$30.25
3	20	50	-30	-\$19.73
4	90	55	35	\$20.01
5	120	12.95	107.05	\$53.22
			NPV:	\$5.87
			Interest:	0.15
			IRR:	0.19

Example Project Portfolio Data

	B	C	D	E
Project	IRR	Risk Factor	Cost (\$)	
1	0.35	0.15	200	
2	0.25	0.05	500	
3	0.3	0.5	700	
4	0.15	0.3	300	
5	0.28	0.25	400	
6	0.25	0.3	900	
7	0.2	0.2	600	
8	0.3	0.1	800	

Constraints

- Must balance risk and reward
- Cannot exceed budget of \$3000
- Risk must be within limit of “management reserve” (percentage of overall budget, 20% in this example - \$600)



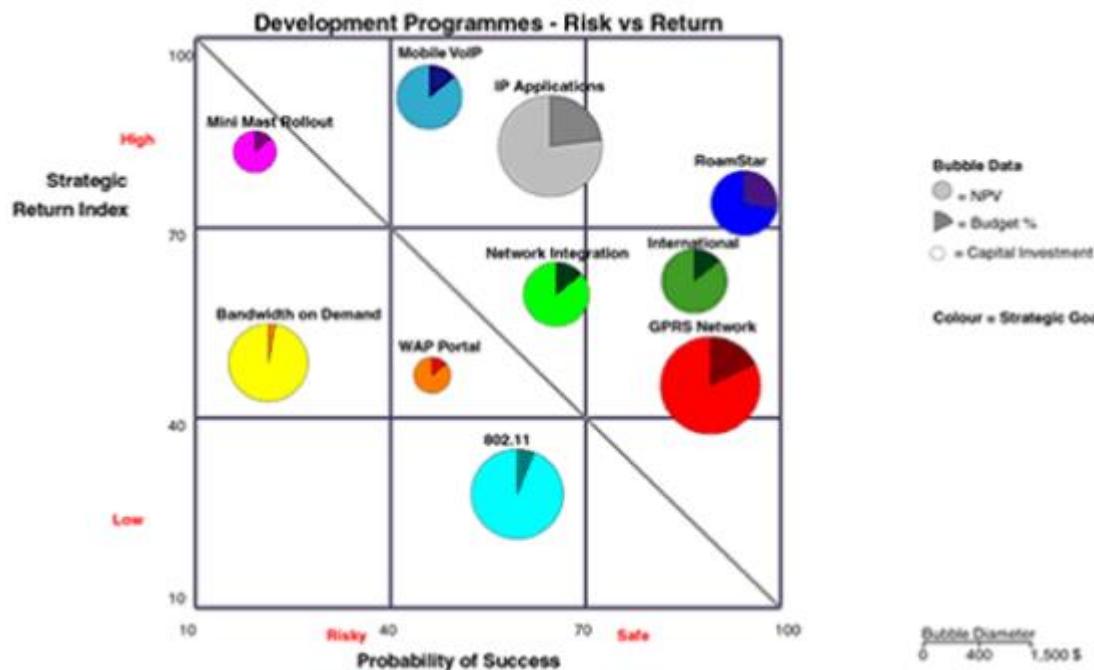
Which projects would you do ?

Budget less than \$3000

Risk Contingency <= \$600

	B	C	D	E
Project	IRR	Risk Factor	Cost (\$)	
1	0.35	0.15	200	
2	0.25	0.05	500	
3	0.3	0.5	700	
4	0.15	0.3	300	
5	0.28	0.25	400	
6	0.25	0.3	900	
7	0.2	0.2	600	
8	0.3	0.1	800	

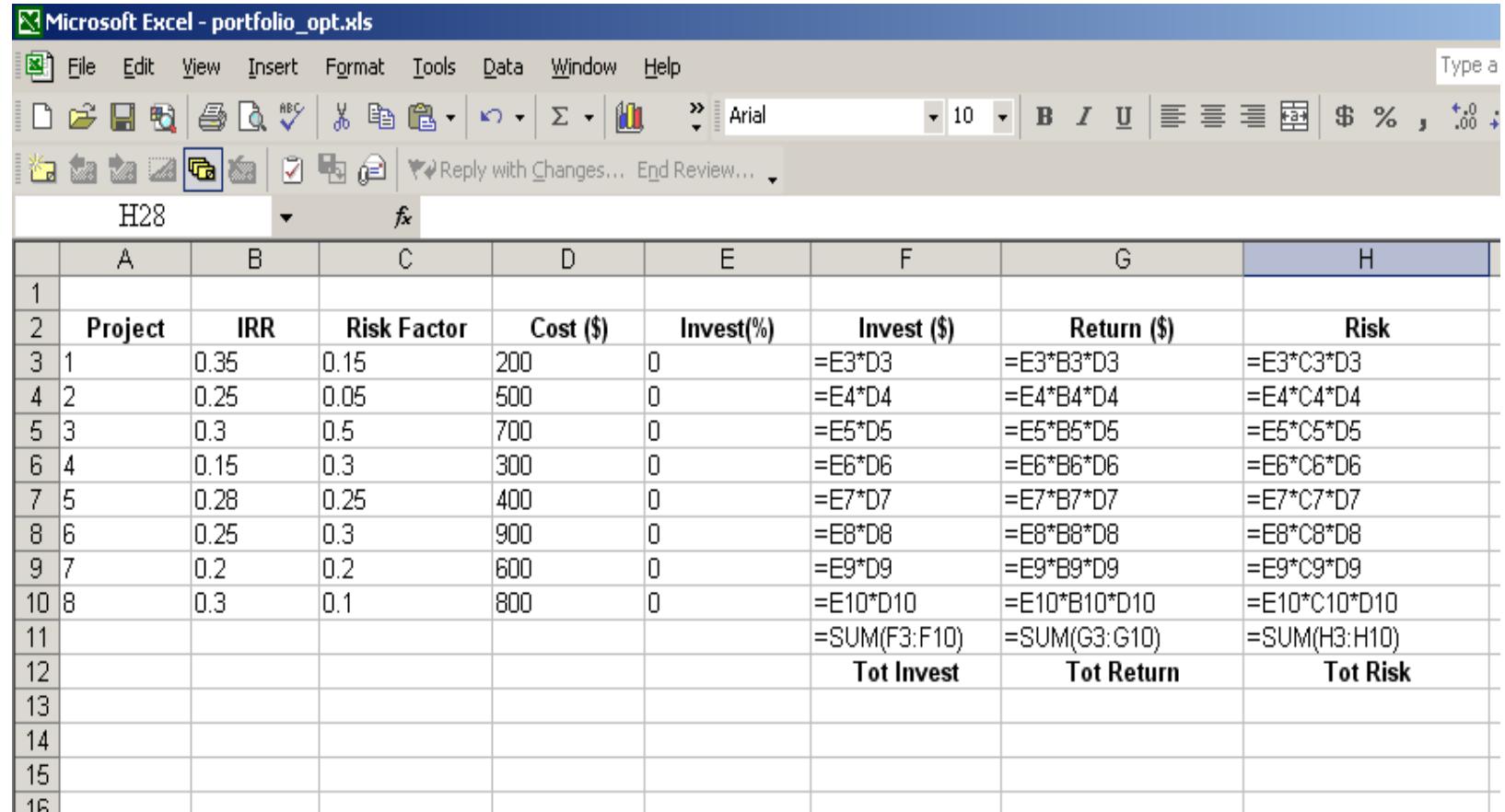
- What are the variables ?
- Use of binary variables?



■ Do not look ahead !

Calculating Return and Risk

[column E is a binary value]



The screenshot shows a Microsoft Excel spreadsheet titled "Microsoft Excel - portfolio_opt.xls". The spreadsheet is a portfolio optimization model with the following structure:

	A	B	C	D	E	F	G	H
1								
2	Project	IRR	Risk Factor	Cost (\$)	Invest(%)	Invest (\$)	Return (\$)	Risk
3	1	0.35	0.15	200	0	=E3*D3	=E3*B3*D3	=E3*C3*D3
4	2	0.25	0.05	500	0	=E4*D4	=E4*B4*D4	=E4*C4*D4
5	3	0.3	0.5	700	0	=E5*D5	=E5*B5*D5	=E5*C5*D5
6	4	0.15	0.3	300	0	=E6*D6	=E6*B6*D6	=E6*C6*D6
7	5	0.28	0.25	400	0	=E7*D7	=E7*B7*D7	=E7*C7*D7
8	6	0.25	0.3	900	0	=E8*D8	=E8*B8*D8	=E8*C8*D8
9	7	0.2	0.2	600	0	=E9*D9	=E9*B9*D9	=E9*C9*D9
10	8	0.3	0.1	800	0	=E10*D10	=E10*B10*D10	=E10*C10*D10
11						=SUM(F3:F10)	=SUM(G3:G10)	=SUM(H3:H10)
12						Tot Invest	Tot Return	Tot Risk
13								
14								
15								
16								

The formulas in the spreadsheet use relative cell references (e.g., E3, B3, D3) to calculate the total investment, return, and risk for the entire portfolio. The "Invest(%)" column contains binary values (0 or 1) representing whether a project is included in the portfolio. The "Invest (\$)" column uses the formula =E3*D3 to calculate the investment for project 1, and so on for the other projects. The "Return (\$)" column uses the formula =E3*B3*D3 to calculate the return for project 1, and so on. The "Risk" column uses the formula =E3*C3*D3 to calculate the risk for project 1, and so on. The "Tot Invest" and "Tot Return" columns use the SUM function to add up the individual values for the entire portfolio. The "Tot Risk" column is currently empty.

Using Excel Solver to Set Up Constraints and Get Solution

[newer versions of Excel have “bin” constraint]

Project	IRR	Risk Factor	Cost (\$)	Invest(%)	Invest (\$)	Return (\$)	Risk
1	0.35	0.15	200	0	0	0	0
2	0.25	0.05	500	0	0	0	0
3	0.3	0.5	700	0	0	0	0
4	0.15	0.3	300	0	0	0	0
5	0.28	0.25	400	0	0	0	0
6	0.26	0.3	900	0	0	0	0
7	0.2	0.2	600	0	0	0	0
8	0.3	0.1	800	0	0	0	0
					0	0	0
						Tot Invest	Tot Return
							Tot Risk

Solver Parameters

Set Target Cell:

Equal To: Max Min Value of:

By Changing Cells:

Subject to the Constraints:

-
-
-
-
-

heet1 / Sheet2 / 5

Answers

[not doing projects 3,4,5]

B	C	D	E	F	G	H	I
Project	IRR	Risk Factor	Cost (\$)	Invest(%)	Invest (\$)	Return (\$)	Risk
1	0.35	0.15	200	1	200	70	30
2	0.25	0.05	500	1	500	125	25
3	0.3	0.5	700	0	0	0	0
4	0.15	0.3	300	0	0	0	0
5	0.28	0.25	400	0	0	0	0
6	0.25	0.3	900	1	900	225	270
7	0.2	0.2	600	1	600	120	120
8	0.3	0.1	800	1	800	240	80
					3000	780	525
					Tot Invest	Tot Return	Tot Risk

Limits on Alternatives Selected

- Suppose it is required to select no more than Z of the projects *regardless* of the funds available
- This would require adding a constraint

$$X_1 + X_2 + X_3 + \dots \leq Z$$

- If they had to fund *exactly* Z of the projects the constraint would be

$$X_1 + X_2 + X_3 + \dots = Z$$

Dependent Selections

- At times the selection of one project depends on the selection of another project
- Suppose project 1 could only be done if the project 2 was also done
- The following constrain would force this to occur

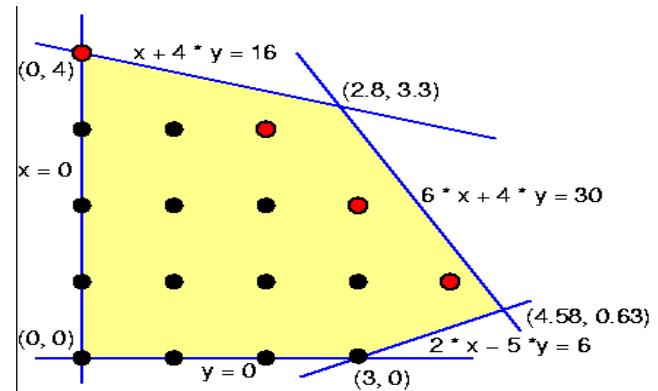
$$X_1 \leq X_2 \quad \text{or} \quad X_1 - X_2 \leq 0$$

- If we wished for project 1 and project 2 to either both be selected or both not be selected, the constraint would be

$$X_1 = X_2 \quad \text{or} \quad X_1 - X_2 = 0$$

Homework

- Textbook Chapter 9 thru section 9.4
- Discussion questions from chapter 9: 2, 3, 4
- Project Seven →



Project 7

- A aero company uses three plants to manufacture amphibious airplane floats
- Let x_1 be the batches of big float batches per week and let x_2 be the number of small float batches per week
- The big floats contribute 3 units to profit per batch and the small floats contribute 2 units to profit per batch

Project 7 (con't)

- Plant 1 can produce up to 4 batches of x_1 per week; plant 2 can produce up to 6 units of x_2 per week; plant 3 can produce up to 18 batches per week in the ratio of 3 of x_1 and 2 of x_2
- **What is the optimal mix of big float and small float batches to make each week?**
- **The number of float batches must be integers**
- **Show your setup and solution in Excel or QM**

