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LP Problems Today

◼Today the 

main difficulty 

is formulating 

the LP 

problem, not in 

solving it !!!
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Packing Problem

◼ In this type of problem we have to pack a 
number of items into a number of physical or 
logical spaces

◼ We want to optimize the number of items or 
the value of the items packed into the spaces

◼ There are constraints on how much can be 
packed into the spaces based on 
characteristics of the “items” and 
characteristics of the “space”
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Capacity of Plane

Space Weight Capacity 

(tons)

Volume 

Capacity

(cu ft)

Forward Hold 75 4000

Main Hold 150 10000

Aft Hold 50 7000
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Available Cargo
[which should we take none of, which should we take all of]

Cargo Tons Cu ft/ton $/ton

Memory Chips 200 60 800

NIC’s 100 48.6 600

Monitors 500 4.1

(dense)

200

(cheap)

Mother Boards

(w cpu)

50 240

(bulky)

2500

(expensive)



◼What are the variables ?

◼What is the objective function ?

◼What are the constraints ?
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◼Do not look ahead !
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Variables

◼Let:

◼W = tons of memory chips

◼X = tons of NIC’s

◼Y = tons of monitors

◼Z = tons of mother boards
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Objective Function

◼Objective function to maximize:
◼ Z = 800 W + 600 X + 200 Y + 2500 Z
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Constraints

◼Availability of cargo (supply)

◼Weight of each hold

◼Capacity (volume) of each hold

◼What if we do not load the holds 

“evenly” by weight ?
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Distribution Variables

◼ More variables:

◼ WF = W in forward hold (chips in forward hold)

◼ WC = W in main hold

◼ WA = W in aft hold

◼ Similarly for other items:

◼ XF, XC, XA

◼ YF, YC, YA

◼ ZF, ZC, ZA
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Distribution Constraints

◼W = WF + WC + WA

◼X = XF + XC + XA

◼Y = YF + YC + YA

◼Z = ZF + ZC + ZA
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Trim Constraints

◼The ratio of the weight of the cargo stored 

in each hold to that hold’s maximum 

weight must be equal across all three 

holds !

◼ (WF + XF + YF + ZF)/75 = (WC + XC + YC + 

ZC)/150 

◼ (WA + XA + YA + ZA)/50 = (WC + XC + YC + 

ZC)/150 
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Supply Constraints

◼W <= 200 (chips)

◼X <= 100 (NIC’s)

◼Y <= 500 (monitors)

◼Z <= 50 (boards)
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Weight Constraints

◼WF + XF + YF + ZF <=75 (forward)

◼WC + XC + YC + ZC <= 150 (center)

◼WA + XA + YA + ZA <= 50 (aft)
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Volume Constraints

◼ 60 WF + 48.6 XF + 4.1 YF + 240 ZF <= 

4000 (forward)

◼ 60 WC + 48.6 XC + 4.1 YC + 240 ZC <= 

10000 (center)

◼ 60 WA + 48.6 XA + 4.1 YA + 240 ZA <= 

7000 (aft)



Excel Solution



Solver

[no NIC’s, all the memory chips]



Integer Programming

◼ An integer programming model is one where one or 

more of the decision variables has to take on an 

integer value in the final solution

◼ There are three types of integer programming 

problems

1. Pure integer programming where all variables 

have integer values 

2. Mixed-integer programming where some but not 

all of the variables will have integer values

3. Zero-one integer (binary programming) are 

special cases in which all the decision variables 

must have integer solution values of 0 or 1



Integer Programming (con’t)

◼ Solving an integer programming problem is 

much more difficult than solving an LP problem

◼ Even the fastest computers can take an 

excessively long time to solve big integer 

programming problems

◼ There are a number of methods for solving 

integer programming problems, and a common 

technique used to solve integer programming 

problems is the branch and bound method

◼ There may be multiple solutions to integer 

programming problems



Integer Programming (con’t)

Copyright – Dan Brandon



Example of Integer Programming

◼ A company produces two products popular with 

home renovators: old-fashioned chandeliers and 

ceiling fans

◼ Both the chandeliers and fans require a two-step 

production process involving wiring and assembly

◼ It takes about 2 hours to wire each chandelier and 3 

hours to wire a ceiling fan

◼ Final assembly of the chandeliers and fans requires 6 

and 5 hours respectively

◼ The production capability is such that only 12 hours 

of wiring time and 30 hours of assembly time are 

available



Example of Integer Programming (con’t)

◼Each chandelier produced nets the firm 

$7 and each fan $6 

◼What are the variables ?

◼What are the constraints ?
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◼Do not look ahead !



Example of Integer Programming (con’t)

◼ This “production mix” decision can be 

formulated using LP as follows:

Maximize profit = $7X1 + $6X2

subject to 2X1 + 3X2 ≤ 12 (wiring hours)

6X1 + 5X2 ≤ 30 (assembly hours)

X1, X2 ≥ 0 (nonnegative)

where

X1 = number of chandeliers produced, must be an  integer 

X2 = number of ceiling fans produced, must be an integer



◼How could we approach 

solving this problem ?
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Example of Integer Programming (con’t)

6 –

5 –

4 –

3 –

2 –

1 –

0 –| | | | | | |

1 2 3 4 5 6 X1

X2

+

++

++++

+

6X1 + 5X2 ≤ 30

2X1 + 3X2 ≤ 12

+ = Possible Integer Solution

Optimal LP Solution

(X1 =3.75, X2 = 1.5,

Profit = $35.25)



Example of Integer Programming (con’t)

◼ A first attempt at solving may be to round the 

optimal values to X1 = 4 and X2 = 2

◼ However, this is outside of the feasible area

◼ Rounding X2 down to 1 gives a feasible 

solution, but it may not be optimal

◼ This could be solved using an enumeration

method

◼ Enumeration is generally not feasible for 

large problems



Enumeration For Integer Programming

◼ Integer 

solutions
CHANDELIERS (X1) CEILING FANS (X2) PROFIT ($7X1 + $6X2)

0 0 $0

1 0 7

2 0 14

3 0 21

4 0 28

5 0 35

0 1 6

1 1 13

2 1 20

3 1 27

4 1 34

0 2 12

1 2 19

2 2 26

3 2 33

0 3 18

1 3 25

0 4 24

Optimal solution to 
integer programming 
problem



Example of Integer Programming (con’t)

◼The optimal integer solution of X1 = 5, 

X2 = 0 gives a profit of $35

◼The optimal integer solution (35) is less 

than the optimal LP solution (35.25)

◼An integer solution can never be better 

than the LP solution and is usually a 

lesser solution



Example of Integer Programming 

(con’t)
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MAX



Example of Integer Programming 

(con’t)

Copyright – Dan Brandon

For integer problems, one still chooses the “simplex” method in Excel, 

Excel will automatically switch over to the “branch and bound” method

Max



Example of Integer Programming 

(con’t)
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Using QM…
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“Transportation” Problems

◼ There are a number of special management 
problems that can be solved via integer linear 
programming

◼ One common problem is that of the 
“transportation problem”

◼ Here we have a number of plants (or 
warehouses) that can produce (or ship) 
products subject to supply constraints and we 
have a number of consumers (or customers) 
that have certain demands for products

◼ There is a cost associated with shipping 
product from the warehouses to the customers



“Transportation” Problems (con’t)

Copyright – Dan Brandon
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◼What are the variables ?

◼What is the objective function ?

◼What are the constraints ?
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“Transportation” Problems (con’t)

◼ Let:

◼ Xij = number of units shipped from source i to 

destination j (integers)

◼ cij = cost of one unit from source i to 

destination j

◼ si = supply at source i

◼ dj = demand at destination j
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“Transportation” Problems (con’t)

Minimize cost = 

Subject to:

i = 1, 2,…, m   [supply]

j = 1, 2, …, n   [demand]

xij ≥ 0 for all i and j, and are integers
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Transportation Matrix in Excel
[showing demand, supply, and transport costs]

Cost from

Dallas to

Jackson

What are the cells for the decision variables ?
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Set Up Shipment Table and Cost Function

◼ Target is D20 
(minimize)

◼ Manipulate 
c15:e17

◼ Subject to:

◼ Col totals 
equal 
demand

◼ Row totals 
<= supply

◼ Shipments 
are 
integers 
and +

Need another matrix for decision variables.
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Parameters for Excel Solver



50

Excel Solution
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After Formatting Cells



Using QM…
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Unbalanced Transportation Problems

◼ In real-life problems, total demand may not be equal 

to total supply

◼ These unbalanced problems can be handled easily 

by introducing dummy sources or dummy 

destinations

◼ If total supply is greater than total demand, a dummy 

destination (warehouse), with demand exactly equal 

to the surplus, is created 

◼ If total demand is greater than total supply, we 

introduce a dummy source (factory) with a supply 

equal to the excess of demand over supply



Unbalanced Transportation Problems (con’t)

◼ In either case, shipping cost coefficients of 

zero are assigned to each dummy location or 

route as no goods will actually be shipped.

◼ Any units assigned to a dummy destination 

represent excess capacity

◼ Any units assigned to a dummy source 

represent unmet demand
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More Than One Optimal Solution

◼ It is possible for a transportation problem to 

have multiple optimal solutions

◼ This means that it is possible to design 

alternative shipping routes with the same total 

shipping cost

◼ In the real world, alternate optimal solutions 

provide management with greater flexibility in 

selecting and using resources



Unacceptable Or Prohibited Routes

◼ At times there are transportation problems in which 

one of the sources is unable to ship to one or more of 

the destinations

◼ The problem is said to have an unacceptable or 

prohibited route

◼ In a minimization problem, such a prohibited route is 

assigned a very high cost to prevent this route from 

ever being used in the optimal solution

◼ In a maximization problem, the very high cost used in 

minimization problems is given a negative sign, turning 

it into a very bad profit



Facility Location Analysis

◼ The transportation method is especially 

useful in helping a firm to decide where to 

locate a new factory or warehouse

◼ Each alternative location should be analyzed 

within the framework of one overall

distribution system

◼ The new location that yields the minimum 

cost for the entire system is the one that 

should be chosen



Special Methods

◼ Transportation and assignment problems have 

some special algorithms that can be utilized as 

well as the general purpose integer linear 

programming methods including:

◼ Branch and bound

◼ Modified corner point methods

◼ Stepping stone methods

◼ Hungarian methods, etc.

Copyright – Dan Brandon
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Labor Planning

◼ Labor planning problems address 

resource needs over time and/or space

◼The resources are often restricted to 

integers such as X number of people

◼For example a bank may need a certain 

number of tellers for time periods of the 

day to satisfy differing customer demand 

by time period as shown on the next slide 

(for a total of 112 needed daily hours)
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Labor Planning (con’t)

Time Period # of Tellers Required

9am – 10am 10

10am – 11am 12

11am – Noon 14

Noon – 1pm 16

1pm – 2pm 18

2pm – 3pm 17

3pm – 4pm 15

4pm – 5pm 10

Copyright – Dan Brandon



Labor Planning (con’t)

◼ The bank employs up to 12 full time tellers at a cost of 

$100 per day per teller

◼ Full time tellers work from 9am until 5pm with 1 hour off 

for lunch (35 hour work week); half of the full time tellers 

go to lunch at 11am and the other half at noon

◼ Part time tellers put in exactly 4 hours per day and can 

start at any hourly even time slot (between 9am and 

1pm); they cost $32 per day (Let P1 be tellers at first 

time slot, P2 at second time slot, etc.)

◼ By regulations part time worker hours cannot exceed 

50% of the total teller required hours:

◼ 4 * (P1 + P2 + P3 + P4 + P5) <= .5 * 112 <=  56
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Labor Planning (con’t)
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Labor Planning (con’t)
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Labor Planning (con’t)
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Labor Planning (con’t)
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Another solution at $1448 – there are multiple optimal solutions



Labor Planning (con’t)
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Another Optimal solution – which one depends upon starting values

for the solution variables, and the order of the constraints !!!



Mixed-Integer Programming 

Problem Example

◼ There are many situations in which some of the variables 

are restricted to be integers and some are not

◼ As an example consider a chemical company that 

produces two industrial chemicals

◼ Xyline must be produced in 50-pound bags

◼ Hexall is sold by the pound and can be produced in any 

quantity

◼ Both xyline and hexall are composed of three ingredients 

– A, B, and C

◼ Xyline sells for $85 a bag and hexall for $1.50 per pound



Mixed-Integer Programming 

Problem Example (con’t)

◼ We want to maximize profit

◼ We let X = number of 50-pound bags of xyline

◼ We let Y = number of pounds of hexall

◼ This is a mixed-integer programming problem as Y is 

not required to be an integer

AMOUNT PER 50-POUND 
BAG OF XYLINE (LB)

AMOUNT PER POUND 
OF HEXALL (LB)

AMOUNT OF 
INGREDIENTS 
AVAILABLE

30 0.5 2,000 lb–ingredient A

18 0.4 800 lb–ingredient B

2 0.1 200 lb–ingredient C



Mixed-Integer Programming 

Problem Example (con’t)

◼ The model is

Maximize profit = $85X + $1.50Y

subject to 30X + 0.5Y ≤ 2,000

18X + 0.4Y ≤ 800

2X + 0.1Y ≤ 200

X, Y >= 0 and X integer



Mixed-Integer Programming 

Problem Example (con’t)

◼ Using Excel QM



Mixed-Integer Programming 

Problem Example (con’t)
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Need to manually

Add integer constraint



Real World Mixed Integer Problem
[Network Mode Optimization for the DHL Supply Chain, Informs J. on 

Applied Analytics, Vol 51, No 3 2021]
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Modeling With 0-1 (Binary) Variables

◼ Let’s demonstrate how 0-1 

variables can be used to 

model several diverse 

situations

◼ Typically a 0-1 variable is 

assigned a value of 0 if a 

certain condition is not met 

and a 1 if the condition is met

◼ This is also called a binary 

variable



The Assignment Problem

◼ Another common LP algorithm is the assignment 

method

◼ Each assignment problem has associated with it a 

table, or matrix

◼ Generally, the rows contain the objects or people we 

wish to assign, and the columns comprise the tasks or 

things to which we want them assigned

◼ The numbers in the table are the costs associated with 

each particular assignment

◼ An assignment problem can be viewed as a 

transportation problem in which the capacity from each 

source is 1 and the demand at each destination is 1



Assignment Model Approach

◼ The Knucklehead’s Fix-It Shop has three rush 

projects to repair

◼ The shop has three repair persons with different 

talents and abilities (Larry, Curley, and Moe)

◼ The owner has estimates of wage costs for each 

worker for each project

◼ The owner’s objective is to assign the three projects 

to the workers in a way that will result in the lowest 

cost to the shop

◼ Each project will be assigned exclusively to one 

worker



Assignment Problem Approach 

(con’t)
Estimated Project Repair Costs for the Fix-It Shop 

Assignment Problem

PROJECT

PERSON 1 2 3

Larry $11 $14 $6

Curley 8 10 11

Moe 9 12 7



◼ Xij = 1 if person i is assigned to job j, else 0

◼ Minimize Z = 11X11 + 14X12 + 6X13 +

◼ 8X21 + 10X22 + 11X23 +

◼ 9X31 + 12X32 + 7X33

◼ Subject to:

◼ Xi1 + Xi2 + Xi3 <= 1  for I = 1 to 3

◼ Xij >=0 and Xij <=1 and Xij is an integer (Xij are binary)
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Assignment Model Approach 

(con’t)
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Using QM…
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Using QM…

Copyright – Dan Brandon



Using QM…
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Using QM…
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Fixed-Charge Problem Example

◼ Often businesses are faced with decisions involving 

a fixed charge that will affect the cost of future 

operations

◼ A manufacturing company is planning to build at 

least one new plant and three cities are being 

considered:

◼ Baytown, Texas

◼ Lake Charles, Louisiana

◼ Mobile, Alabama

◼ Once the plant or plants are built, the company wants to 

have capacity to produce at least 38,000 units each year



Fixed-Charge Problem Example (con’t)

◼ Fixed and variable costs for Manufacturing Co.

SITE
ANNUAL 
FIXED COST

VARIABLE COST 
PER UNIT

ANNUAL 
CAPACITY

Baytown, TX $340,000 $32 21,000

Lake Charles, LA $270,000 $33 20,000

Mobile, AL $290,000 $30 19,000



◼Management decisions ? [need 38,000/yr]

◼What are the variables ?

◼Use of binary variables?

Copyright – Dan Brandon

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=eiuu3naWzbtu2M&tbnid=pZf-93T8d_hZZM:&ved=0CAUQjRw&url=http://www.cecinfo.com/Markets/Manufacturing/&ei=PCY7Uv2RL8LhygGJioGwDw&bvm=bv.52288139,d.aWc&psig=AFQjCNH6cGx7cs2My9-0cdf8ACxUWsk8zA&ust=1379694521280067
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◼Do not look ahead !



Fixed-Charge Problem Example (con’t)

◼ We can define the decision variables as

X1 = 1 if factory is built in Baytown
0 otherwise

X2 = 1 factory is built in Lake Charles
0 otherwise

X3 = 1 if factory is built in Mobile
0 otherwise

X4 = number of units produced at Baytown plant

X5 = number of units produced at Lake Charles plant

X6 = number of units produced at Mobile plant



Fixed-Charge Problem Example (con’t)

◼ The integer programming formulation becomes

Minimize cost = 340,000X1 + 270,000X2 + 290,000X3

+ 32X4 + 33X5 + 30X6

subject to X4 + X5 + X6 ≥ 38,000

X4 ≤ 21,000X1

X5 ≤ 20,000X2

X6 ≤ 19,000X3

X1, X2, X3 = 0 or 1; 

X4, X5, X6 ≥ 0 and integer

◼ The optimal solution is

X1 = 0, X2 = 1, X3 = 1 [build Lake Charles & Mobile Plants]

X4 = 0, X5 = 19,000, X6 = 19,000

Objective function value = $1,757,000

Note capacity constraints

expressed in terms of

binary variables



Fixed-Charge Problem Example (con’t)
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Fixed-Charge Problem Example (con’t)
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Fixed-Charge Problem Example (con’t)
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95

Portfolio Optimization

◼Portfolio problems can be regular LP 
problems or a type of integer problems

◼Maximize the return from a number of 
financial investments subject to risk 
and diversity constraints – regular LP

◼Maximize the return on projects by 
selecting which projects to work on 
within risk and budget constraints – a 
zero/one type of integer programming 
problem (binary programming)



96

Net Present Value

◼ NPV = ∑ (B – C)t/(1+i)t

◼Where (B-C)t is the benefit minus the cost 

for period t

◼ i is the interest rate (cost of borrowing 

money or opportunity cost for other uses of 

cash)

◼ For NPV, benefit minus cost is more 

formally revenue (cash in) minus 

expenditures (cash out) 
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NPV Example
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Internal Rate of Return (IRR)

◼ Another similar project financial evaluation technique is 
called the internal rate of return (IRR)

◼ This metric is better than NPV since it is not as 
sensitive to the uncertainties of future benefits and 
costs and to the future interest rates

◼ The internal rate of return is the value of the interest 
rate that yields a zero value for NPV
◼ This can be calculated in spreadsheet programs by using built-

in “solver” tools. Since in reality a quadratic equation is being 
solved, multiple IRR values could be found. Thus one must 
impose additional constraints on the solution (such as IRR is 
positive, or in a given range). 
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IRR Example
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Projects with the same net present value may have 

different internal rates of return
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Example Project Portfolio Data
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Constraints

◼Must balance risk and 

reward

◼Cannot exceed budget 

of $3000

◼Risk must be within limit 

of “management 

reserve” (percentage of 

overall budget, 20% in 

this example - $600)
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Which projects would you do ?

Budget less than $3000        Risk Contingency <= $600



◼What are the variables ?

◼Use of binary variables?
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◼Do not look ahead !
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Calculating Return and Risk
[column E is a binary value]
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Using Excel Solver to Set Up Constraints and Get Solution

[newer versions of Excel have “bin” constraint]
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Answers
[not doing projects 3,4,5]



Limits on Alternatives Selected

◼ Suppose it is required to select no more than 

Z of the  projects regardless of the funds 

available

◼ This would require adding a constraint

X1 + X2 + X3 + ... ≤ Z

◼ If they had to fund exactly Z of the projects 

the constraint would be

X1 + X2 + X3 + … = Z



Dependent Selections

◼ At times the selection of one project depends on the 

selection of another project

◼ Suppose project 1 could only be done if the project 2 

was also done

◼ The following constrain would force this to occur

X1 ≤ X2 or   X1 – X2 ≤ 0

◼ If we wished for project 1 and project 2 to either both 

be selected or both not be selected, the constraint 

would be

X1 = X2 or   X1 – X2 = 0
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Homework

◼Textbook Chapter 9 thru section 
9.4

◼Discussion questions from 
chapter 9: 2, 3, 4

◼Project Seven →
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Project 7

◼ A aero company uses three plants to 
manufacture amphibious airplane floats

◼ Let x1 be the batches of big float batches per 
week and let x2 be the number of small float 
batches per week

◼ The big floats contribute 3 units to profit per 
batch and the small floats contribute 2 units to 
profit per batch
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Project 7 (con’t)

◼ Plant 1 can produce up to 4 
batches of x1 per week; plant 2 
can produce up to 6 units of x2 
per week; plant 3 can produce 
up to 18 batches per week in the 
ratio of 3 of x1 and 2 of x2

◼ What is the optimal mix of big 
float and small float batches to 
make each week?

◼ The number of float batches 
must be integers

◼ Show your setup and solution in 
Excel or QM

Copyright – Dan Brandon

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=mPCUABvbCpccvM&tbnid=9EeZGI421sw0pM:&ved=0CAUQjRw&url=http://blog.aopa.org/blog/?p%3D650&ei=2_45UsbPCeTf2QWDuYHQDw&bvm=bv.52288139,d.b2I&psig=AFQjCNGiTJHBx4TBZsr8akj1Lpzyv26B-Q&ust=1379618458608251

